Weak measurement-based protocol for ergotropy protection in open quantum batteries
- URL: http://arxiv.org/abs/2411.16633v1
- Date: Mon, 25 Nov 2024 18:12:00 GMT
- Title: Weak measurement-based protocol for ergotropy protection in open quantum batteries
- Authors: André H. A. Malavazi, Rishav Sagar, Borhan Ahmadi, Pedro R. Dieguez,
- Abstract summary: We propose a protocol that employs selective weak measurements to protect quantum states from such influence and mitigate battery discharging.
Our findings demonstrate that appropriately chosen measurement intensity can reduce unwanted discharging effects.
We explore how weak measurements influence the coherent and incoherent components of ergotropy, providing new insights into the practical application of quantum coherence in energy storage technologies.
- Score: 0.0
- License:
- Abstract: Quantum batteries are emerging as highly efficient energy storage devices that can exceed classical performance limits. Although there have been significant advancements in controlling these systems, challenges remain in stabilizing stored energy and minimizing losses due to inevitable environmental interaction. In this paper, we propose a protocol that employs selective weak measurements to protect quantum states from such influence and mitigate battery discharging. We establish thermodynamic constraints that allow this method to be implemented without disrupting the overall energy and ergotropy balance of the system. Our findings demonstrate that appropriately chosen measurement intensity can reduce unwanted discharging effects, thereby preserving ergotropy and improving the stability of quantum batteries. Additionally, we explore how weak measurements influence the coherent and incoherent components of ergotropy, providing new insights into the practical application of quantum coherence in energy storage technologies.
Related papers
- Energy-Aware Dynamic Neural Inference [39.04688735618206]
We introduce an on-device adaptive inference system equipped with an energy-harvester and finite-capacity energy storage.
We show that, as the rate of the ambient energy increases, energy- and confidence-aware control schemes show approximately 5% improvement in accuracy.
We derive a principled policy with theoretical guarantees for confidence-aware and -agnostic controllers.
arXiv Detail & Related papers (2024-11-04T16:51:22Z) - Metastability-Induced Solid-State Quantum Batteries for Powering Microwave Quantum Electronics [6.780537241694333]
We propose a solid-state open quantum battery where metastable states enable stable superextensive charging without complicated protocols and energy storage with extended lifetime.
We show the controllable manner of the work extraction from the quantum battery, which can be exploited for on-demand coherent microwave emission at room temperature.
arXiv Detail & Related papers (2024-10-29T09:47:25Z) - Revising the quantum work fluctuation framework to encompass energy conservation [0.0]
We introduce a genuinely quantum, positive correction to the Jarzynski equality stemming from imposing energy conservation.
We construct modified two-point measurement schemes for work that ensure energy conservation for coherent quantum states.
arXiv Detail & Related papers (2024-06-26T18:00:00Z) - Quantum control by the environment: Turing uncomputability, Optimization over Stiefel manifolds, Reachable sets, and Incoherent GRAPE [56.47577824219207]
In many practical situations, the controlled quantum systems are open, interacting with the environment.
In this note, we briefly review some results on control of open quantum systems using environment as a resource.
arXiv Detail & Related papers (2024-03-20T10:09:13Z) - Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - Impact of non-Markovian quantum Brownian motion on quantum batteries [0.0]
Quantum batteries serve as energy storage devices governed by the rules of quantum thermodynamics.
Here, we propose a model of a quantum battery wherein the system of interest can be envisaged as a battery.
We employ quantifiers like ergotropy and its (in)-coherent manifestations, as well as instantaneous and average powers, to characterize the performance of the quantum battery.
arXiv Detail & Related papers (2023-08-28T13:35:55Z) - Potential and limitations of quantum extreme learning machines [55.41644538483948]
We present a framework to model QRCs and QELMs, showing that they can be concisely described via single effective measurements.
Our analysis paves the way to a more thorough understanding of the capabilities and limitations of both QELMs and QRCs.
arXiv Detail & Related papers (2022-10-03T09:32:28Z) - Enhancing self-discharging process with disordered quantum batteries [0.0]
Self-discharging, the process of charge wasting of quantum batteries due to decoherence phenomenon, limits their performance.
The effects of local field fluctuation, introduced by disorder term in Hamiltonian of the system, on the performance of the quantum batteries is investigated.
arXiv Detail & Related papers (2021-12-14T11:53:51Z) - Boosting quantum battery performance by structure engineering [6.211723927647019]
Quantum coherences, correlations and collective effects can be harnessed to the advantage of quantum batteries.
We introduce a feasible structure engineering scheme that is applicable to spin-based open quantum batteries.
arXiv Detail & Related papers (2021-04-13T21:34:55Z) - Assessment of weak-coupling approximations on a driven two-level system
under dissipation [58.720142291102135]
We study a driven qubit through the numerically exact and non-perturbative method known as the Liouville-von equation with dissipation.
We propose a metric that may be used in experiments to map the regime of validity of the Lindblad equation in predicting the steady state of the driven qubit.
arXiv Detail & Related papers (2020-11-11T22:45:57Z) - Experimental Realization of Nonadiabatic Holonomic Single-Qubit Quantum
Gates\\ with Optimal Control in a Trapped Ion [38.217839102257365]
We experimentally demonstrate nonadiabatic holonomic single qubit quantum gates with optimal control in a trapped Yb ion.
Compared with corresponding previous geometric gates and conventional dynamic gates, the superiority of our scheme is that it is more robust against control amplitude errors.
arXiv Detail & Related papers (2020-06-08T14:06:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.