論文の概要: Reaction-conditioned De Novo Enzyme Design with GENzyme
- arxiv url: http://arxiv.org/abs/2411.16694v1
- Date: Sun, 10 Nov 2024 00:37:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-01 05:11:00.547129
- Title: Reaction-conditioned De Novo Enzyme Design with GENzyme
- Title(参考訳): 酵素を用いた反応条件付きデノボ酵素の設計
- Authors: Chenqing Hua, Jiarui Lu, Yong Liu, Odin Zhang, Jian Tang, Rex Ying, Wengong Jin, Guy Wolf, Doina Precup, Shuangjia Zheng,
- Abstract要約: textscGENzymeは、触媒反応を入力として、触媒ポケット、全酵素構造、酵素-基質結合複合体を生成する、テクスチドノボ酵素設計モデルである。
textscGENzymeは,(1)触媒ポケット生成および配列共設計モジュール,(2)ポケット塗布および酵素逆折り畳みモジュール,(3)酵素-基質複合体の最適化と予測のための結合およびスクリーニングモジュールを統合した,エンド・ツー・エンドの3段階モデルである。
- 参考スコア(独自算出の注目度): 64.14088142258498
- License:
- Abstract: The introduction of models like RFDiffusionAA, AlphaFold3, AlphaProteo, and Chai1 has revolutionized protein structure modeling and interaction prediction, primarily from a binding perspective, focusing on creating ideal lock-and-key models. However, these methods can fall short for enzyme-substrate interactions, where perfect binding models are rare, and induced fit states are more common. To address this, we shift to a functional perspective for enzyme design, where the enzyme function is defined by the reaction it catalyzes. Here, we introduce \textsc{GENzyme}, a \textit{de novo} enzyme design model that takes a catalytic reaction as input and generates the catalytic pocket, full enzyme structure, and enzyme-substrate binding complex. \textsc{GENzyme} is an end-to-end, three-staged model that integrates (1) a catalytic pocket generation and sequence co-design module, (2) a pocket inpainting and enzyme inverse folding module, and (3) a binding and screening module to optimize and predict enzyme-substrate complexes. The entire design process is driven by the catalytic reaction being targeted. This reaction-first approach allows for more accurate and biologically relevant enzyme design, potentially surpassing structure-based and binding-focused models in creating enzymes capable of catalyzing specific reactions. We provide \textsc{GENzyme} code at https://github.com/WillHua127/GENzyme.
- Abstract(参考訳): RFDiffusionAA、AlphaFold3、AlphaProteo、Chai1のようなモデルの導入は、タンパク質構造モデリングと相互作用予測に革命をもたらした。
しかしながら、これらの手法は、完璧な結合モデルがまれであり、誘導適合状態がより一般的である酵素-基質相互作用に不足する可能性がある。
これを解決するために、酵素の機能を触媒する反応によって定義する酵素設計のための機能的視点にシフトする。
本稿では, 触媒反応を入力として, 触媒ポケット, フル酵素構造, 酵素-基質結合複合体を生成する酵素設計モデルである, textsc{GENzyme}を紹介する。
\textsc{GENzyme} は(1)触媒ポケット生成と配列共設計モジュール、(2)ポケット塗布と酵素逆フォールディングモジュール、(3)酵素-基質複合体の最適化と予測のための結合およびスクリーニングモジュールを統合したエンドツーエンドの3段階モデルである。
設計プロセス全体は、標的とする触媒反応によって駆動される。
この反応第一のアプローチは、より正確で生物学的に関係のある酵素の設計を可能にし、特定の反応を触媒できる酵素を作る際に、構造に基づくモデルや結合に焦点を当てたモデルを上回る可能性がある。
https://github.com/WillHua127/GENzyme.comで \textsc{GENzyme} コードを提供しています。
関連論文リスト
- UniZyme: A Unified Protein Cleavage Site Predictor Enhanced with Enzyme Active-Site Knowledge [10.678089839728889]
我々はUniZymeという名前の統一されたタンパク質切断部位予測器を導入し、多様な酵素をまたいで一般化することができる。
実験により、UniZymeは様々なタンパク質分解酵素の切断部位の予測において高い精度を達成することが示された。
論文 参考訳(メタデータ) (2025-02-10T09:46:26Z) - Learning Chemical Reaction Representation with Reactant-Product Alignment [50.28123475356234]
RAlignは、様々な有機反応関連タスクのための新しい化学反応表現学習モデルである。
反応物質と生成物との原子対応を統合することにより、反応中に起こる分子変換を識別する。
モデルが重要な機能群に集中できるように,反応中心認識型アテンション機構を導入する。
論文 参考訳(メタデータ) (2024-11-26T17:41:44Z) - EnzymeFlow: Generating Reaction-specific Enzyme Catalytic Pockets through Flow Matching and Co-Evolutionary Dynamics [51.47520281819253]
酵素設計はバイオテクノロジーにおいて重要な領域であり、医薬品開発から合成生物学まで幅広い応用がある。
酵素機能予測やタンパク質結合ポケット設計の伝統的な手法は、しばしば酵素-基質相互作用の動的および複雑な性質を捉えるのに不足する。
本稿では, 触媒ポケットを生成するために, 階層的事前学習と酵素-反応共進化を用いたフローマッチングを用いた生成モデルであるEnzymeFlowを紹介する。
論文 参考訳(メタデータ) (2024-10-01T02:04:01Z) - ReactZyme: A Benchmark for Enzyme-Reaction Prediction [41.33939896203491]
触媒反応に基づくアノテート酵素の新しいアプローチを提案する。
酵素反応データセットの解析に機械学習アルゴリズムを用いる。
本研究は,酵素反応予測を検索問題として捉え,酵素の触媒活性を比例してランク付けすることを目的とする。
論文 参考訳(メタデータ) (2024-08-24T19:19:33Z) - Generative Enzyme Design Guided by Functionally Important Sites and Small-Molecule Substrates [16.5169461287914]
本稿では,酵素をすべての官能基にまたがって設計する統一モデルを学ぶためのアプローチであるEnzyGenを提案する。
我々のキーとなるアイデアは、酵素のアミノ酸配列とその3D座標を、所望の触媒機能に対応する機能的に重要な部位と基質に基づいて生成することである。
論文 参考訳(メタデータ) (2024-05-13T21:48:48Z) - MARS: A Motif-based Autoregressive Model for Retrosynthesis Prediction [54.75583184356392]
本稿では,レトロシンセシス予測のための新しいエンドツーエンドグラフ生成モデルを提案する。
反応中心を逐次同定し、合成子を生成し、合成子にモチーフを加えて反応子を生成する。
ベンチマークデータセットの実験では、提案されたモデルが従来の最先端のアルゴリズムを大幅に上回っていることが示されている。
論文 参考訳(メタデータ) (2022-09-27T06:29:35Z) - Machine learning modeling of family wide enzyme-substrate specificity
screens [2.276367922551686]
バイオ触媒は、医薬品、複雑な天然物、商品化学物質を大規模に合成するための有望なアプローチである。
生体触媒の導入は、非天然基質上での化学的変換を触媒する酵素の選択能力によって制限される。
論文 参考訳(メタデータ) (2021-09-08T19:44:42Z) - RetroXpert: Decompose Retrosynthesis Prediction like a Chemist [60.463900712314754]
そこで我々は, テンプレートフリーな自動逆合成拡張アルゴリズムを考案した。
我々の方法はレトロシンセシスを2段階に分解する。
最先端のベースラインよりも優れている一方で、我々のモデルは化学的に合理的な解釈も提供する。
論文 参考訳(メタデータ) (2020-11-04T04:35:34Z) - Learning Graph Models for Retrosynthesis Prediction [90.15523831087269]
再合成予測は有機合成の基本的な問題である。
本稿では,前駆体分子のグラフトポロジーが化学反応中にほとんど変化しないという考え方を生かしたグラフベースのアプローチを提案する。
提案モデルでは,テンプレートフリーおよび半テンプレートベースの手法よりも高い5,3.7%の精度でトップ1の精度を実現している。
論文 参考訳(メタデータ) (2020-06-12T09:40:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。