論文の概要: Generative Enzyme Design Guided by Functionally Important Sites and Small-Molecule Substrates
- arxiv url: http://arxiv.org/abs/2405.08205v3
- Date: Wed, 17 Jul 2024 15:14:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-18 21:57:43.667773
- Title: Generative Enzyme Design Guided by Functionally Important Sites and Small-Molecule Substrates
- Title(参考訳): 機能的に重要な部位と小分子の基質によって誘導される生成酵素設計
- Authors: Zhenqiao Song, Yunlong Zhao, Wenxian Shi, Wengong Jin, Yang Yang, Lei Li,
- Abstract要約: 本稿では,酵素をすべての官能基にまたがって設計する統一モデルを学ぶためのアプローチであるEnzyGenを提案する。
我々のキーとなるアイデアは、酵素のアミノ酸配列とその3D座標を、所望の触媒機能に対応する機能的に重要な部位と基質に基づいて生成することである。
- 参考スコア(独自算出の注目度): 16.5169461287914
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Enzymes are genetically encoded biocatalysts capable of accelerating chemical reactions. How can we automatically design functional enzymes? In this paper, we propose EnzyGen, an approach to learn a unified model to design enzymes across all functional families. Our key idea is to generate an enzyme's amino acid sequence and their three-dimensional (3D) coordinates based on functionally important sites and substrates corresponding to a desired catalytic function. These sites are automatically mined from enzyme databases. EnzyGen consists of a novel interleaving network of attention and neighborhood equivariant layers, which captures both long-range correlation in an entire protein sequence and local influence from nearest amino acids in 3D space. To learn the generative model, we devise a joint training objective, including a sequence generation loss, a position prediction loss and an enzyme-substrate interaction loss. We further construct EnzyBench, a dataset with 3157 enzyme families, covering all available enzymes within the protein data bank (PDB). Experimental results show that our EnzyGen consistently achieves the best performance across all 323 testing families, surpassing the best baseline by 10.79% in terms of substrate binding affinity. These findings demonstrate EnzyGen's superior capability in designing well-folded and effective enzymes binding to specific substrates with high affinities.
- Abstract(参考訳): 酵素は、化学反応を加速できる遺伝子コード化された生体触媒である。
機能性酵素をどのように設計するか?
本稿では,酵素設計のための統一モデルであるEnzyGenを提案する。
我々のキーとなるアイデアは、酵素のアミノ酸配列とその3次元(3D)座標を、所望の触媒機能に対応する機能的に重要な部位と基質に基づいて生成することである。
これらの部位は酵素データベースから自動的に採掘される。
EnzyGenは、タンパク質配列全体における長距離相関と、3D空間における最も近いアミノ酸の局所的影響の両方を捉える、新しいインターリービングネットワークと近隣の同変層で構成されている。
生成モデルを学習するために、配列生成損失、位置予測損失、酵素-基質相互作用損失を含む共同学習目標を考案する。
さらに、タンパク質データバンク(PDB)内のすべての利用可能な酵素をカバーする3157の酵素ファミリーを持つデータセットであるEnzyBenchを構築した。
実験の結果、EnzyGenは323の試験ファミリで一貫して最高のパフォーマンスを達成し、基質結合親和性の点で10.79%のベースラインを上回りました。
これらの結果から, 高い親和性を有する特定の基質に結合する, 十分に折りたたみされた, 効果的な酵素を設計する上で, EnzyGenが優れていることが示唆された。
関連論文リスト
- GraphPrint: Extracting Features from 3D Protein Structure for Drug Target Affinity Prediction [2.0668277618112207]
薬物標的親和性予測のための3Dタンパク質構造特徴を組み込むためのフレームワークであるGraphPrintを提案する。
本モデルでは,平均平方誤差0.1378,一致指数0.8929をKIBAデータセット上で達成する。
我々のアブレーション研究は、3Dタンパク質の構造に基づく特徴が従来の特徴と相補的な情報を提供することを示している。
論文 参考訳(メタデータ) (2024-07-15T05:45:09Z) - Clustering for Protein Representation Learning [72.72957540484664]
本稿では,タンパク質の臨界成分を自動的に検出するニューラルネットワーククラスタリングフレームワークを提案する。
我々のフレームワークはタンパク質をグラフとして扱い、各ノードはアミノ酸を表し、各エッジはアミノ酸間の空間的またはシーケンシャルな接続を表す。
タンパク質の折り畳み分類, 酵素反応分類, 遺伝子期予測, 酵素コミッショニング数予測の4つの課題について検討した。
論文 参考訳(メタデータ) (2024-03-30T05:51:09Z) - Exploiting Hierarchical Interactions for Protein Surface Learning [52.10066114039307]
本質的には、タンパク質表面のポテンシャル関数部位は、幾何学的特徴と化学的特徴の両方によって決定される。
本稿では,ディープラーニング技術,すなわち階層型化学・幾何学的特徴相互作用ネットワーク(HCGNet)に基づく原則的フレームワークを提案する。
提案手法は,現場予測タスクが2.3%,インタラクションマッチングタスクが3.2%,従来の最先端手法が2.3%向上した。
論文 参考訳(メタデータ) (2024-01-17T14:10:40Z) - Functional Geometry Guided Protein Sequence and Backbone Structure
Co-Design [12.585697288315846]
本稿では,自動検出機能部位に基づくタンパク質配列と構造を共同設計するモデルを提案する。
NAEProは、全シーケンスでグローバルな相関を捉えることができる、注目層と同変層のインターリービングネットワークによって駆動される。
実験結果から,本モデルは全競技種の中で,最高アミノ酸回収率,TMスコア,最低RMSDを実現していることがわかった。
論文 参考訳(メタデータ) (2023-10-06T16:08:41Z) - A Latent Diffusion Model for Protein Structure Generation [50.74232632854264]
本稿では,タンパク質モデリングの複雑さを低減できる潜在拡散モデルを提案する。
提案手法は, 高い設計性と効率性を有する新規なタンパク質のバックボーン構造を効果的に生成できることを示す。
論文 参考訳(メタデータ) (2023-05-06T19:10:19Z) - State-specific protein-ligand complex structure prediction with a
multi-scale deep generative model [68.28309982199902]
タンパク質-リガンド複合体構造を直接予測できる計算手法であるNeuralPLexerを提案する。
我々の研究は、データ駆動型アプローチがタンパク質と小分子の構造的協調性を捉え、酵素や薬物分子などの設計を加速させる可能性を示唆している。
論文 参考訳(メタデータ) (2022-09-30T01:46:38Z) - Contrastive Multiview Coding for Enzyme-Substrate Interaction Prediction [0.0]
本稿では,この問題にContrastive Multiview Codingを適用し,予測性能を向上させるための新しい手法を提案する。
反応データの複数ビューの一致性は予測性能の向上に有効であることを示す。
論文 参考訳(メタデータ) (2021-11-18T01:18:36Z) - Machine learning modeling of family wide enzyme-substrate specificity
screens [2.276367922551686]
バイオ触媒は、医薬品、複雑な天然物、商品化学物質を大規模に合成するための有望なアプローチである。
生体触媒の導入は、非天然基質上での化学的変換を触媒する酵素の選択能力によって制限される。
論文 参考訳(メタデータ) (2021-09-08T19:44:42Z) - Deep Learning of High-Order Interactions for Protein Interface
Prediction [58.164371994210406]
本稿では,タンパク質界面の予測を2次元密度予測問題として定式化する。
タンパク質をグラフとして表現し、グラフニューラルネットワークを用いてノードの特徴を学習する。
我々は高次対相互作用を組み込んで、異なる対相互作用を含む3次元テンソルを生成する。
論文 参考訳(メタデータ) (2020-07-18T05:39:35Z) - BERTology Meets Biology: Interpreting Attention in Protein Language
Models [124.8966298974842]
注目レンズを用いたタンパク質トランスフォーマーモデルの解析方法を示す。
注意はタンパク質の折りたたみ構造を捉え、基礎となる配列では遠く離れているが、三次元構造では空間的に近接しているアミノ酸を接続する。
また、注意とタンパク質構造との相互作用を三次元的に可視化する。
論文 参考訳(メタデータ) (2020-06-26T21:50:17Z) - Enzyme promiscuity prediction using hierarchy-informed multi-label
classification [6.6828647808002595]
本稿では,983個の異なる酵素が問合せ分子と相互作用しうるかを予測するための機械学習モデルを提案し,評価する。
いくつかの相互作用は自然選択に起因し、酵素の天然基質を含む。
しかし、相互作用の大部分は非天然基質を含んでおり、プロミスキュラスな酵素活性を反映している。
論文 参考訳(メタデータ) (2020-02-18T01:39:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。