論文の概要: PaRCE: Probabilistic and Reconstruction-based Competency Estimation for CNN-based Image Classification
- arxiv url: http://arxiv.org/abs/2411.16715v1
- Date: Fri, 22 Nov 2024 22:08:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:33:21.323005
- Title: PaRCE: Probabilistic and Reconstruction-based Competency Estimation for CNN-based Image Classification
- Title(参考訳): PaRCE: CNN画像分類のための確率的・再構成的コンピテンシー推定
- Authors: Sara Pohland, Claire Tomlin,
- Abstract要約: 確率的・再構成型能力推定法(PaRCE)を開発した。
本手法は, 異常領域を有するOODサンプルを正しく分類し, 誤分類し, 識別するのが最適であることがわかった。
本手法は,認識モデル信頼度という全体論的概念を最も確実に捉えた解釈可能なスコアを生成する。
- 参考スコア(独自算出の注目度): 0.10923877073891446
- License:
- Abstract: Convolutional neural networks (CNNs) are extremely popular and effective for image classification tasks but tend to be overly confident in their predictions. Various works have sought to quantify uncertainty associated with these models, detect out-of-distribution (OOD) inputs, or identify anomalous regions in an image, but limited work has sought to develop a holistic approach that can accurately estimate perception model confidence across various sources of uncertainty. We develop a probabilistic and reconstruction-based competency estimation (PaRCE) method and compare it to existing approaches for uncertainty quantification and OOD detection. We find that our method can best distinguish between correctly classified, misclassified, and OOD samples with anomalous regions, as well as between samples with visual image modifications resulting in high, medium, and low prediction accuracy. We describe how to extend our approach for anomaly localization tasks and demonstrate the ability of our approach to distinguish between regions in an image that are familiar to the perception model from those that are unfamiliar. We find that our method generates interpretable scores that most reliably capture a holistic notion of perception model confidence.
- Abstract(参考訳): 畳み込みニューラルネットワーク(CNN)は画像分類タスクに非常に人気があり、有効であるが、予測に過度に自信を持つ傾向がある。
様々な研究が、これらのモデルに関連する不確実性を定量化したり、アウト・オブ・ディストリビューション(OOD)の入力を検出したり、画像内の異常領域を特定しようとしたが、限られた研究は、様々な不確実性源の知覚モデル信頼度を正確に推定できる包括的アプローチを開発しようと試みてきた。
本研究では,確率的・再構成型能力推定法(PaRCE)を開発し,不確実性定量化とOOD検出のための既存手法と比較する。
本手法は, 異常領域を有するOOD検体と, 高, 中, 低予測精度を有する画像修正検体とを識別できる。
本稿では, 異常な局所化タスクに対する我々のアプローチを拡張し, 認識モデルに慣れ親しんだ画像内の領域を識別する能力を示す。
本手法は,認識モデル信頼度という全体論的概念を最も確実に捉えた解釈可能なスコアを生成する。
関連論文リスト
- Revisiting Confidence Estimation: Towards Reliable Failure Prediction [53.79160907725975]
多くの信頼度推定法は誤分類誤りを検出するのに有害である。
本稿では, 最先端の故障予測性能を示す平坦な最小値を求めることにより, 信頼性ギャップを拡大することを提案する。
論文 参考訳(メタデータ) (2024-03-05T11:44:14Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
本研究では,Nadaraya-Watson の条件付きラベル分布の非パラメトリック推定に基づく分類器の予測の不確かさの測定方法を示す。
種々の実世界の画像データセットにおける不確実性推定タスクにおいて,本手法の強い性能を示す。
論文 参考訳(メタデータ) (2022-02-07T12:30:45Z) - MDN-VO: Estimating Visual Odometry with Confidence [34.8860186009308]
視覚オドメトリー(VO)は、ロボット工学や自律システムを含む多くのアプリケーションで使われている。
本研究では、6-DoFのポーズを推定する深層学習に基づくVOモデルと、これらの推定に対する信頼度モデルを提案する。
本実験は,本モデルが故障事例の検出に加えて,最先端の性能を上回ることを示す。
論文 参考訳(メタデータ) (2021-12-23T19:26:04Z) - Deblurring via Stochastic Refinement [85.42730934561101]
条件付き拡散モデルに基づくブラインドデブロアリングのための代替フレームワークを提案する。
提案手法は,PSNRなどの歪み指標の点で競合する。
論文 参考訳(メタデータ) (2021-12-05T04:36:09Z) - PDC-Net+: Enhanced Probabilistic Dense Correspondence Network [161.76275845530964]
高度確率密度対応ネットワーク(PDC-Net+)は、精度の高い高密度対応を推定できる。
我々は、堅牢で一般化可能な不確実性予測に適したアーキテクチャと強化されたトレーニング戦略を開発する。
提案手法は,複数の挑戦的幾何マッチングと光学的フローデータセットに対して,最先端の結果を得る。
論文 参考訳(メタデータ) (2021-09-28T17:56:41Z) - Uncertainty-Aware Reliable Text Classification [21.517852608625127]
ディープニューラルネットワークは、分類タスクの予測精度の成功に大きく貢献している。
ドメインシフトやアウト・オブ・ディストリビューション(out-of-distribution)の例が存在する現実の環境では、過度に信頼された予測を行う傾向があります。
補助外乱と擬似外乱サンプルを併用して, あるクラスの事前知識でモデルを訓練する, 安価なフレームワークを提案する。
論文 参考訳(メタデータ) (2021-07-15T04:39:55Z) - Uncertainty-aware Generalized Adaptive CycleGAN [44.34422859532988]
unpaired image-to-image translationは、教師なしの方法で画像ドメイン間のマッピングを学ぶことを指す。
既存の手法はしばしば、外れ値への堅牢性や予測不確実性を明示的にモデル化せずに決定論的マッピングを学習する。
Uncertainty-aware Generalized Adaptive Cycle Consistency (UGAC) という新しい確率論的手法を提案する。
論文 参考訳(メタデータ) (2021-02-23T15:22:35Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
ニューラルネットワークは、普遍関数近似器として機能することで、複雑なデータ分布から学習することに成功した。
彼らはしばしば予測に自信過剰であり、不正確で誤った確率的予測に繋がる。
本稿では,モデルが不当に過信である特徴空間の領域を探索し,それらの予測のエントロピーをラベルの以前の分布に対して条件的に高める手法を提案する。
論文 参考訳(メタデータ) (2021-02-22T07:02:37Z) - Learning Accurate Dense Correspondences and When to Trust Them [161.76275845530964]
2つの画像に関連する密度の高い流れ場と、堅牢な画素方向の信頼度マップの推定を目指しています。
フロー予測とその不確実性を共同で学習するフレキシブルな確率的アプローチを開発する。
本手法は,幾何学的マッチングと光フローデータセットに挑戦する最新の結果を得る。
論文 参考訳(メタデータ) (2021-01-05T18:54:11Z) - Ramifications of Approximate Posterior Inference for Bayesian Deep
Learning in Adversarial and Out-of-Distribution Settings [7.476901945542385]
ベイジアン深層学習モデルが従来のニューラルネットワークよりわずかに優れていることを示す。
予備的な調査は、初期化、アーキテクチャ、アクティベーション関数の選択によるバイアスの潜在的固有の役割を示している。
論文 参考訳(メタデータ) (2020-09-03T16:58:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。