論文の概要: What can LLM tell us about cities?
- arxiv url: http://arxiv.org/abs/2411.16791v1
- Date: Mon, 25 Nov 2024 09:07:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:32:50.128028
- Title: What can LLM tell us about cities?
- Title(参考訳): LLMは都市について何を教えてくれますか?
- Authors: Zhuoheng Li, Yaochen Wang, Zhixue Song, Yuqi Huang, Rui Bao, Guanjie Zheng, Zhenhui Jessie Li,
- Abstract要約: 本研究では,世界規模で都市や地域に関する知識を提供する上で,大規模言語モデル(LLM)の能力について検討する。
実験の結果、LLMはグローバルな都市に広範に多様な知識を組み込んでおり、MLモデルはLLMに由来する特徴に基づいて一貫して訓練され、予測精度が向上していることがわかった。
- 参考スコア(独自算出の注目度): 6.405546719612814
- License:
- Abstract: This study explores the capabilities of large language models (LLMs) in providing knowledge about cities and regions on a global scale. We employ two methods: directly querying the LLM for target variable values and extracting explicit and implicit features from the LLM correlated with the target variable. Our experiments reveal that LLMs embed a broad but varying degree of knowledge across global cities, with ML models trained on LLM-derived features consistently leading to improved predictive accuracy. Additionally, we observe that LLMs demonstrate a certain level of knowledge across global cities on all continents, but it is evident when they lack knowledge, as they tend to generate generic or random outputs for unfamiliar tasks. These findings suggest that LLMs can offer new opportunities for data-driven decision-making in the study of cities.
- Abstract(参考訳): 本研究では,世界規模で都市や地域に関する知識を提供する上で,大規模言語モデル(LLM)の能力について検討する。
目的変数に対して LLM を直接問合せし,目的変数と相関した LLM から明示的で暗黙的な特徴を抽出する。
実験の結果,LLMはグローバルな都市に広範に多様な知識を組み込んでおり,LLMをベースとしたMLモデルは一貫して学習し,予測精度の向上に寄与していることがわかった。
さらに,LLMは全大陸のグローバル都市にまたがる一定のレベルの知識を示すが,未知のタスクに対して汎用的あるいはランダムなアウトプットを生成する傾向があるため,知識の欠如が明らかである。
これらの結果から,LLMは都市研究におけるデータ駆動型意思決定に新たな機会をもたらす可能性が示唆された。
関連論文リスト
- WALL-E: World Alignment by Rule Learning Improves World Model-based LLM Agents [55.64361927346957]
大規模言語モデル(LLM)による規則の勾配なし学習のためのニューロシンボリックアプローチを提案する。
我々のLLMエージェントWALL-Eはモデル予測制御(MPC)上に構築されている
MinecraftとALFWorldにおけるオープンワールドの課題について、WALL-Eは既存の方法よりも高い成功率を達成する。
論文 参考訳(メタデータ) (2024-10-09T23:37:36Z) - Connecting the Dots: LLMs can Infer and Verbalize Latent Structure from Disparate Training Data [9.31120925026271]
本研究では, LLMが学習文書に分散した証拠から潜伏情報を推測する, 暗黙の帰納的推論(OOCR)について検討する。
ある実験では、未知の都市と他の既知の都市の間の距離のみからなるコーパスにLSMを微調整する。
OOCRは様々なケースで成功するが、特にLLMが複雑な構造を学ぶ場合、信頼性が低いことも示している。
論文 参考訳(メタデータ) (2024-06-20T17:55:04Z) - Small Models, Big Insights: Leveraging Slim Proxy Models To Decide When and What to Retrieve for LLMs [60.40396361115776]
本稿では,スリムプロキシモデルを用いた大規模言語モデル (LLM) における知識不足を検知する新しい協調手法であるSlimPLMを提案する。
パラメータがはるかに少ないプロキシモデルを採用し、回答を回答としています。
ヒューリスティックな回答は、LLM内の既知の未知の知識と同様に、ユーザの質問に答えるために必要な知識を予測するのに使用される。
論文 参考訳(メタデータ) (2024-02-19T11:11:08Z) - Large Language Models: A Survey [69.72787936480394]
大規模言語モデル(LLM)は、広範囲の自然言語タスクにおける強力なパフォーマンスのために、多くの注目を集めている。
LLMの汎用言語理解と生成能力は、膨大なテキストデータに基づいて数十億のモデルのパラメータを訓練することで得られる。
論文 参考訳(メタデータ) (2024-02-09T05:37:09Z) - See the Unseen: Better Context-Consistent Knowledge-Editing by Noises [73.54237379082795]
知識編集が大規模言語モデル(LLM)の知識を更新
既存の作業はこの特性を無視し、編集には一般化が欠けている。
実験により、異なる文脈がLLMに与える影響は、同じ知識を思い出す際にガウス的な分布に従うことが判明した。
論文 参考訳(メタデータ) (2024-01-15T09:09:14Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - LLaMA Rider: Spurring Large Language Models to Explore the Open World [36.261626047323695]
環境知識を継続的に獲得し、オープンな世界で適応する大規模言語モデルの能力は、いまだに不確実である。
オープンな世界を探索し,経験を収集し,課題解決能力の向上を学ぶために,LLMを刺激するアプローチを提案する。
オープンエンドのサンドボックス世界であるMinecraftでの評価により,LLaMA-Rider による環境探索における LLM の効率向上が実証された。
論文 参考訳(メタデータ) (2023-10-13T07:47:44Z) - Investigating the Factual Knowledge Boundary of Large Language Models with Retrieval Augmentation [109.8527403904657]
大規模言語モデル(LLM)は,その知識に対する信頼度が低く,内部知識と外部知識の衝突をうまく扱えないことを示す。
検索の強化は、LLMの知識境界に対する認識を高める効果的なアプローチであることが証明されている。
本稿では,文書を動的に活用するための簡易な手法を提案する。
論文 参考訳(メタデータ) (2023-07-20T16:46:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。