論文の概要: XAI and Android Malware Models
- arxiv url: http://arxiv.org/abs/2411.16817v1
- Date: Mon, 25 Nov 2024 16:33:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:36:00.120862
- Title: XAI and Android Malware Models
- Title(参考訳): XAIとAndroidのマルウェアモデル
- Authors: Maithili Kulkarni, Mark Stamp,
- Abstract要約: 我々は,Android のマルウェア分類問題に対して学習を行った ML および DL モデルに XAI 技術を適用した。
この問題領域におけるXAI技術の有用性について論じる。
- 参考スコア(独自算出の注目度): 1.3812010983144798
- License:
- Abstract: Android malware detection based on machine learning (ML) and deep learning (DL) models is widely used for mobile device security. Such models offer benefits in terms of detection accuracy and efficiency, but it is often difficult to understand how such learning models make decisions. As a result, these popular malware detection strategies are generally treated as black boxes, which can result in a lack of trust in the decisions made, as well as making adversarial attacks more difficult to detect. The field of eXplainable Artificial Intelligence (XAI) attempts to shed light on such black box models. In this paper, we apply XAI techniques to ML and DL models that have been trained on a challenging Android malware classification problem. Specifically, the classic ML models considered are Support Vector Machines (SVM), Random Forest, and $k$-Nearest Neighbors ($k$-NN), while the DL models we consider are Multi-Layer Perceptrons (MLP) and Convolutional Neural Networks (CNN). The state-of-the-art XAI techniques that we apply to these trained models are Local Interpretable Model-agnostic Explanations (LIME), Shapley Additive exPlanations (SHAP), PDP plots, ELI5, and Class Activation Mapping (CAM). We obtain global and local explanation results, and we discuss the utility of XAI techniques in this problem domain. We also provide a literature review of XAI work related to Android malware.
- Abstract(参考訳): 機械学習(ML)モデルとディープラーニング(DL)モデルに基づくAndroidマルウェアの検出は、モバイルデバイスのセキュリティに広く利用されている。
このようなモデルは、検出精度と効率の点で利点を提供するが、そのような学習モデルがどのように決定を下すかを理解することはしばしば困難である。
その結果、これらの一般的なマルウェア検出戦略は一般にブラックボックスとして扱われ、決定に対する信頼の欠如と敵攻撃の発見がより困難になる可能性がある。
eXplainable Artificial Intelligence(XAI)の分野は、このようなブラックボックスモデルに光を当てようとしている。
本稿では,Android のマルウェア分類問題に対する学習を行った ML と DL モデルに対して,XAI の手法を適用した。
具体的には、古典的なMLモデルは、SVM(Support Vector Machines)、ランダムフォレスト(Random Forest)、および$k$-Nearest Neighbors(k$-NN)、そして私たちが検討しているDLモデルは、MLP(Multi-Layer Perceptrons)、CNN(Convolutional Neural Networks)である。
これらのモデルに適用した最先端のXAI技術は、Local Interpretable Model-Agnostic Explanations (LIME)、Shapley Additive ExPlanations (SHAP)、PDPプロット、ELI5、Class Activation Mapping (CAM)である。
この問題領域におけるXAI技術の有用性について論じる。
また,Android マルウェアに関連する XAI の文献レビューを行った。
関連論文リスト
- MASKDROID: Robust Android Malware Detection with Masked Graph Representations [56.09270390096083]
マルウェアを識別する強力な識別能力を持つ強力な検出器MASKDROIDを提案する。
我々は、グラフニューラルネットワークベースのフレームワークにマスキング機構を導入し、MASKDROIDに入力グラフ全体の復元を強制する。
この戦略により、モデルは悪意のあるセマンティクスを理解し、より安定した表現を学習し、敵攻撃に対する堅牢性を高めることができる。
論文 参考訳(メタデータ) (2024-09-29T07:22:47Z) - A Survey of Malware Detection Using Deep Learning [6.349503549199403]
本稿では,ディープラーニング(DL)を用いたWindows,iOS,Android,Linuxにおけるマルウェア検出の進歩について検討する。
本稿では,DL分類器を用いたマルウェア検出の問題点と課題について論じる。
各種データセットに対する8つの一般的なDLアプローチについて検討する。
論文 参考訳(メタデータ) (2024-07-27T02:49:55Z) - Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection
Capability [70.72426887518517]
Out-of-Distribution(OOD)検出は、機械学習モデルを現実世界のアプリケーションにデプロイする際に、セキュアAIの必須の側面である。
本稿では,IDデータを用いた学習モデルのOOD識別能力を復元する新しい手法であるUnleashing Maskを提案する。
本手法では, マスクを用いて記憶した非定型サンプルを抽出し, モデルを微調整するか, 導入したマスクでプルーする。
論文 参考訳(メタデータ) (2023-06-06T14:23:34Z) - Can Feature Engineering Help Quantum Machine Learning for Malware
Detection? [7.010669841466896]
本稿では,この問題に対処するための理論量子MLのハイブリッドフレームワークを提案する。
XGBoostが選択したVQCは、シミュレータで78.91%の精度でテストできる。
XGBoostで選択した特徴を用いてトレーニングしたモデルの平均精度は74%であった。
論文 参考訳(メタデータ) (2023-05-03T19:33:49Z) - Optimizing Explanations by Network Canonization and Hyperparameter
Search [74.76732413972005]
ルールベースで修正されたバックプロパゲーションXAIアプローチは、モダンなモデルアーキテクチャに適用される場合、しばしば課題に直面します。
モデルカノン化は、基礎となる機能を変更することなく問題のあるコンポーネントを無視してモデルを再構成するプロセスである。
本研究では、一般的なディープニューラルネットワークアーキテクチャに適用可能な、現在関連するモデルブロックのカノン化を提案する。
論文 参考訳(メタデータ) (2022-11-30T17:17:55Z) - A Survey of Machine Unlearning [56.017968863854186]
最近の規制では、要求に応じて、ユーザに関する個人情報をコンピュータシステムから削除する必要がある。
MLモデルは古いデータをよく記憶します。
機械学習に関する最近の研究は、この問題を完全に解決することはできなかった。
論文 参考訳(メタデータ) (2022-09-06T08:51:53Z) - How to Robustify Black-Box ML Models? A Zeroth-Order Optimization
Perspective [74.47093382436823]
入力クエリと出力フィードバックだけでブラックボックスモデルを堅牢化する方法?
我々は,ブラックボックスモデルに適用可能な防御操作の一般的な概念を提案し,それを復号化スムーシング(DS)のレンズを通して設計する。
我々は,ZO-AE-DSが既存のベースラインよりも精度,堅牢性,クエリの複雑さを向上できることを実証的に示す。
論文 参考訳(メタデータ) (2022-03-27T03:23:32Z) - MERLIN -- Malware Evasion with Reinforcement LearnINg [26.500149465292246]
本稿では,DQNアルゴリズムとREINFORCEアルゴリズムを用いた強化学習を用いて,最先端の2つのマルウェア検出エンジンに挑戦する手法を提案する。
本手法では,Windows のポータブルな実行ファイルを機能的に損なうことなく変更する動作を複数組み合わせる。
限られた情報しか持たない商用AVでも,REINFORCEは高い回避率を達成できることを実証する。
論文 参考訳(メタデータ) (2022-03-24T10:58:47Z) - Utilizing XAI technique to improve autoencoder based model for computer
network anomaly detection with shapley additive explanation(SHAP) [0.0]
機械学習(ML)とディープラーニング(DL)メソッドは、特にコンピュータネットワークセキュリティにおいて急速に採用されている。
MLとDLベースのモデルの透明性の欠如は、実装の大きな障害であり、ブラックボックスの性質から批判されている。
XAIは、これらのモデルの信頼性を向上させる上で、説明やアウトプットの解釈を通じて有望な分野である。
論文 参考訳(メタデータ) (2021-12-14T09:42:04Z) - Classifying Malware Images with Convolutional Neural Network Models [2.363388546004777]
本稿では,静的マルウェア分類にいくつかの畳み込みニューラルネットワーク(CNN)モデルを用いる。
インセプションV3モデルは99.24%の精度を達成しており、現在の最先端システムによって達成される98.52%の精度よりも優れている。
論文 参考訳(メタデータ) (2020-10-30T07:39:30Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
そこで我々は,ブラックボックス・アタベラル・リプログラミング (BAR) という新しい手法を提案する。
ゼロオーダー最適化とマルチラベルマッピング技術を用いて、BARは入力出力応答のみに基づいてブラックボックスMLモデルをプログラムする。
BARは最先端の手法より優れ、バニラ対逆プログラミング法に匹敵する性能を得る。
論文 参考訳(メタデータ) (2020-07-17T01:52:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。