論文の概要: Multimodal Alignment and Fusion: A Survey
- arxiv url: http://arxiv.org/abs/2411.17040v2
- Date: Sat, 11 Oct 2025 13:22:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-14 15:48:08.029697
- Title: Multimodal Alignment and Fusion: A Survey
- Title(参考訳): マルチモーダルアライメントとフュージョン:サーベイ
- Authors: Songtao Li, Hao Tang,
- Abstract要約: このサーベイは、機械学習分野におけるマルチモーダルアライメントと融合の進歩に関する包括的概要を提供する。
我々は、両構造の観点から、アライメントと融合の鍵となるアプローチを体系的に分類し、分析する。
この調査は、クロスモーダルなミスアライメント、計算ボトルネック、データ品質の問題、モダリティギャップといった重要な課題を強調します。
- 参考スコア(独自算出の注目度): 11.3029945633295
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This survey provides a comprehensive overview of recent advances in multimodal alignment and fusion within the field of machine learning, driven by the increasing availability and diversity of data modalities such as text, images, audio, and video. Unlike previous surveys that often focus on specific modalities or limited fusion strategies, our work presents a structure-centric and method-driven framework that emphasizes generalizable techniques. We systematically categorize and analyze key approaches to alignment and fusion through both structural perspectives -- data-level, feature-level, and output-level fusion -- and methodological paradigms -- including statistical, kernel-based, graphical, generative, contrastive, attention-based, and large language model (LLM)-based methods, drawing insights from an extensive review of over 260 relevant studies. Furthermore, this survey highlights critical challenges such as cross-modal misalignment, computational bottlenecks, data quality issues, and the modality gap, along with recent efforts to address them. Applications ranging from social media analysis and medical imaging to emotion recognition and embodied AI are explored to illustrate the real-world impact of robust multimodal systems. The insights provided aim to guide future research toward optimizing multimodal learning systems for improved scalability, robustness, and generalizability across diverse domains.
- Abstract(参考訳): このサーベイは、テキスト、画像、オーディオ、ビデオなどのデータモダリティの可用性と多様性の増大により、機械学習の分野における最近のマルチモーダルアライメントと融合の進歩の包括的概要を提供する。
特定のモダリティや限定的な融合戦略にしばしば注目する以前の調査とは異なり、我々の研究は、一般化可能なテクニックを強調する構造中心でメソッド駆動のフレームワークを提示している。
データレベル、特徴レベル、出力レベルの融合といった構造的視点と、統計的、カーネルベース、グラフィカル、生成的、コントラストベース、注意ベース、および大規模言語モデル(LLM)ベースの手法を含む方法論的パラダイムの両方を通じて、アライメントと融合のための重要なアプローチを体系的に分類し、分析し、260以上の関連する研究の広範なレビューから洞察を引き出す。
さらに、近年の課題として、クロスモーダルなミスアライメント、計算ボトルネック、データ品質の問題、モダリティのギャップなどを挙げる。
ソーシャルメディア分析や医用画像から感情認識や具体化AIに至るまで、堅牢なマルチモーダルシステムの現実的な影響を説明するために応用が検討されている。
この知見は、様々な領域にわたるスケーラビリティ、堅牢性、一般化性を改善するために、マルチモーダル学習システムの最適化に向けた将来の研究を導くことを目的としている。
関連論文リスト
- Ask in Any Modality: A Comprehensive Survey on Multimodal Retrieval-Augmented Generation [2.549112678136113]
Retrieval-Augmented Generation (RAG) は、外部の動的情報を統合することで問題を緩和する。
クロスモーダルアライメントと推論はMultimodal RAGに固有の課題をもたらし、従来の単調なRAGと区別する。
この調査は、より有能で信頼性の高いAIシステムを開発するための基盤となる。
論文 参考訳(メタデータ) (2025-02-12T22:33:41Z) - Survey of Large Multimodal Model Datasets, Application Categories and Taxonomy [2.294223504228228]
人工知能の急速に発展する分野であるマルチモーダル学習は、より汎用的で堅牢なシステムの構築を目指している。
多くの感覚を通じて情報を同化する人間の能力に触発され、テキストからビデオへの変換、視覚的質問応答、画像キャプションなどの応用が可能となる。
マルチモーダル言語モデル(MLLM)をサポートするデータセットの最近の発展について概説する。
論文 参考訳(メタデータ) (2024-12-23T18:15:19Z) - Multimodal Methods for Analyzing Learning and Training Environments: A Systematic Literature Review [3.0712840129998513]
本稿では,近年の方法論的進歩を包括する分類学と枠組みを提案する。
我々は,新たなデータ融合カテゴリであるMid fusionを導入し,文献レビューを精査するグラフベースの手法を引用グラフプルーニングと呼ぶ。
マルチモーダル学習とトレーニング研究と基礎的AI研究のギャップを埋めるために、さらなる研究が必要である。
論文 参考訳(メタデータ) (2024-08-22T22:42:23Z) - Detecting Misinformation in Multimedia Content through Cross-Modal Entity Consistency: A Dual Learning Approach [10.376378437321437]
クロスモーダルなエンティティの整合性を利用して、ビデオコンテンツから誤情報を検出するためのマルチメディア誤情報検出フレームワークを提案する。
以上の結果から,MultiMDは最先端のベースラインモデルより優れていることが示された。
論文 参考訳(メタデータ) (2024-08-16T16:14:36Z) - HEMM: Holistic Evaluation of Multimodal Foundation Models [91.60364024897653]
マルチモーダル・ファンデーション・モデルは、画像、ビデオ、オーディオ、その他の知覚モダリティと共にテキストをホリスティックに処理することができる。
モデリング決定、タスク、ドメインの範囲を考えると、マルチモーダル基盤モデルの進歩を特徴づけ、研究することは困難である。
論文 参考訳(メタデータ) (2024-07-03T18:00:48Z) - Multimodal Fusion on Low-quality Data: A Comprehensive Survey [110.22752954128738]
本稿では,野生におけるマルチモーダル核融合の共通課題と最近の進歩について考察する。
低品質データ上でのマルチモーダル融合で直面する4つの主な課題を同定する。
この新たな分類によって、研究者はフィールドの状態を理解し、いくつかの潜在的な方向を特定することができる。
論文 参考訳(メタデータ) (2024-04-27T07:22:28Z) - Alternative Telescopic Displacement: An Efficient Multimodal Alignment Method [3.0903319879656084]
本稿では,マルチモーダル情報の融合に革命をもたらす機能アライメントに対する革新的なアプローチを提案する。
提案手法では,異なるモードをまたいだ特徴表現の遠隔的変位と拡張の新たな反復的プロセスを用いて,共有特徴空間内の一貫性のある統一表現を導出する。
論文 参考訳(メタデータ) (2023-06-29T13:49:06Z) - Multimodality Representation Learning: A Survey on Evolution,
Pretraining and Its Applications [47.501121601856795]
マルチモダリティ表現学習は、異なるモダリティとそれらの相関から情報を埋め込む学習手法である。
異なるモダリティからのクロスモーダル相互作用と補完情報は、高度なモデルが任意のマルチモーダルタスクを実行するために不可欠である。
本調査では,深層学習型マルチモーダルアーキテクチャの進化と拡張に関する文献を報告する。
論文 参考訳(メタデータ) (2023-02-01T11:48:34Z) - Vision+X: A Survey on Multimodal Learning in the Light of Data [64.03266872103835]
様々なソースからのデータを組み込んだマルチモーダル機械学習が,ますます普及している研究分野となっている。
我々は、視覚、音声、テキスト、動きなど、各データフォーマットの共通点と特異点を分析する。
本稿では,表現学習と下流アプリケーションレベルの両方から,マルチモーダル学習に関する既存の文献を考察する。
論文 参考訳(メタデータ) (2022-10-05T13:14:57Z) - Multimodal Image Synthesis and Editing: The Generative AI Era [131.9569600472503]
マルチモーダル画像合成と編集は 近年 ホットな研究テーマになっている。
近年のマルチモーダル画像合成・編集の進歩を包括的に理解している。
ベンチマークデータセットと評価指標と,それに対応する実験結果について述べる。
論文 参考訳(メタデータ) (2021-12-27T10:00:16Z) - MultiBench: Multiscale Benchmarks for Multimodal Representation Learning [87.23266008930045]
MultiBenchは15のデータセット、10のモダリティ、20の予測タスク、6の研究領域にまたがる、体系的で統一されたベンチマークである。
データローディング、実験的なセットアップ、モデル評価を簡素化し、標準化する、エンドツーエンドの自動機械学習パイプラインを提供する。
大規模なマルチモーダルデータセットに対するロバストネスや、現実的な不完全性に対するロバストネスなど、将来の研究に対する影響の高い課題が紹介されている。
論文 参考訳(メタデータ) (2021-07-15T17:54:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。