論文の概要: Spatio-Temporal Conformal Prediction for Power Outage Data
- arxiv url: http://arxiv.org/abs/2411.17099v1
- Date: Tue, 26 Nov 2024 04:34:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:37:14.118185
- Title: Spatio-Temporal Conformal Prediction for Power Outage Data
- Title(参考訳): 停電データに対する時空間等角予測
- Authors: Hanyang Jiang, Yao Xie, Feng Qiu,
- Abstract要約: 本研究では,広範囲な四半期毎の停止データを解析し,グラフ整列予測法を開発した。
本手法の有効性を, 極度気象事象の影響を受けやすいいくつかの州で, 広範囲な数値実験により実証した。
- 参考スコア(独自算出の注目度): 7.006561750578409
- License:
- Abstract: In recent years, increasingly unpredictable and severe global weather patterns have frequently caused long-lasting power outages. Building resilience, the ability to withstand, adapt to, and recover from major disruptions, has become crucial for the power industry. To enable rapid recovery, accurately predicting future outage numbers is essential. Rather than relying on simple point estimates, we analyze extensive quarter-hourly outage data and develop a graph conformal prediction method that delivers accurate prediction regions for outage numbers across the states for a time period. We demonstrate the effectiveness of this method through extensive numerical experiments in several states affected by extreme weather events that led to widespread outages.
- Abstract(参考訳): 近年では、予測不可能で厳しい世界的な気象パターンが長期の停電を引き起こしている。
レジリエンスの構築、耐え、適応し、大きな混乱から回復する能力は、電力産業にとって重要なものとなっている。
迅速な回復を可能にするためには、将来の停止数を正確に予測することが不可欠である。
単純な点推定に頼るのではなく、広範囲な四半期毎の停止データを解析し、各州の停止数に対する正確な予測領域を一定期間提供するグラフ整列予測法を開発する。
本手法の有効性を,広範囲な数値実験により実証した。
関連論文リスト
- Transmission Line Outage Probability Prediction Under Extreme Events Using Peter-Clark Bayesian Structural Learning [4.669957449088593]
本稿では,ベイジアンネットワークとPeter-Clark構造学習を組み合わせた伝送線路停止確率の予測手法を提案する。
提案手法は, 精度の高い停止確率計算を可能にするだけでなく, 限られたデータであっても, より優れたスケーラビリティとロバストな性能を示す。
論文 参考訳(メタデータ) (2024-11-18T19:10:49Z) - Back to the Future: GNN-based NO$_2$ Forecasting via Future Covariates [49.93577170464313]
都市全域にわたる地上監視ネットワークにおける大気質観測について検討する。
我々は過去と将来の共変分を現在の観測に埋め込む条件付きブロックを提案する。
将来の気象情報に対する条件付けは,過去の交通状況を考えるよりも影響が大きいことが判明した。
論文 参考訳(メタデータ) (2024-04-08T09:13:16Z) - Deep Learning-Based Weather-Related Power Outage Prediction with Socio-Economic and Power Infrastructure Data [4.4121133971424165]
本稿では,企業サービス領域を含むセンサストラクタにおける時間ごとの停電確率予測のためのディープラーニングに基づくアプローチを提案する。
2つの異なる深層学習モデル、条件付きマルチ層パーセプトロン(MLP)と非条件付きモデルを開発し、停電確率を予測した。
以上の結果から,センサスレベルでの停電予測の精度を高める上で,社会経済的要因の重要性が示唆された。
論文 参考訳(メタデータ) (2024-04-03T23:38:31Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - Performative Time-Series Forecasting [71.18553214204978]
我々は,機械学習の観点から,パフォーマンス時系列予測(PeTS)を定式化する。
本稿では,予測分布シフトに対する遅延応答の概念を活用する新しい手法であるFeature Performative-Shifting(FPS)を提案する。
新型コロナウイルスの複数の時系列モデルと交通予報タスクを用いた総合的な実験を行った。
論文 参考訳(メタデータ) (2023-10-09T18:34:29Z) - Predicting Temperature of Major Cities Using Machine Learning and Deep
Learning [0.0]
我々は,大都市における気温変化を構成するデイトン大学が作成したデータベースを用いて,将来いつでも異なる都市の気温を予測する。
この文書には、このような予測を行うための方法論が含まれています。
論文 参考訳(メタデータ) (2023-09-23T10:23:00Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
エネルギー予測は、電力グリッドディスパッチのようなその後のタスクのコストを最小化することを目的としている。
本稿では,大規模負荷データセットを収集し,再生可能エネルギーデータセットを新たにリリースした。
評価指標の異なるレベルにおいて,21種類の予測手法を用いた広範囲な実験を行った。
論文 参考訳(メタデータ) (2023-07-14T06:50:02Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
我々は、再分析データから直接トレーニングできる「GraphCast」と呼ばれる機械学習ベースの手法を導入する。
全世界で10日以上、0.25度で、数百の気象変動を1分以内で予測する。
我々は,GraphCastが1380の検証対象の90%において,最も正確な運用決定システムよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-12-24T18:15:39Z) - Short-term precipitation prediction using deep learning [5.1589108738893215]
気象フィールドの1つのフレームを用いた3次元畳み込みニューラルネットワークは降水空間分布を予測することができることを示す。
このネットワークは、気象学の39年 (1980-2018) のデータと、連続した米国上空の毎日の降水に基づいて開発されている。
論文 参考訳(メタデータ) (2021-10-05T06:37:24Z) - Machine learning as a flaring storm warning machine: Was a warning
machine for the September 2017 solar flaring storm possible? [0.0]
機械学習は、過去10年間の最も暴力的で最も予期せぬ出来事についてタイムリーな警告を送る方法として利用できることを示す。
また,スペーサ性向上機械学習と特徴ランクの併用により,予測過程においてエネルギーがアクティブリージョン特性として果たす重要な役割を識別できることが示唆された。
論文 参考訳(メタデータ) (2020-07-05T19:03:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。