論文の概要: From Machine Learning to Machine Unlearning: Complying with GDPR's Right to be Forgotten while Maintaining Business Value of Predictive Models
- arxiv url: http://arxiv.org/abs/2411.17126v2
- Date: Tue, 03 Dec 2024 02:43:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:38:42.851445
- Title: From Machine Learning to Machine Unlearning: Complying with GDPR's Right to be Forgotten while Maintaining Business Value of Predictive Models
- Title(参考訳): 機械学習から機械学習へ:予測モデルのビジネス価値を維持しつつ、GDPRの忘れられる権利を補完する
- Authors: Yuncong Yang, Xiao Han, Yidong Chai, Reza Ebrahimi, Rouzbeh Behnia, Balaji Padmanabhan,
- Abstract要約: この研究は、Ensemble-based iTerative Information Distillation (ETID)と呼ばれる、総合的な機械学習から学習へのフレームワークを開発する。
ETIDには、データ消去要求の処理を容易にする正確な予測モデルを構築するための、新しいアンサンブル学習手法が組み込まれている。
また, 効率的かつ効率的なデータ消去を実現するために, 構築されたアンサンブルモデルに適した, 蒸留に基づく未学習手法を提案する。
- 参考スコア(独自算出の注目度): 9.380866972744633
- License:
- Abstract: Recent privacy regulations (e.g., GDPR) grant data subjects the `Right to Be Forgotten' (RTBF) and mandate companies to fulfill data erasure requests from data subjects. However, companies encounter great challenges in complying with the RTBF regulations, particularly when asked to erase specific training data from their well-trained predictive models. While researchers have introduced machine unlearning methods aimed at fast data erasure, these approaches often overlook maintaining model performance (e.g., accuracy), which can lead to financial losses and non-compliance with RTBF obligations. This work develops a holistic machine learning-to-unlearning framework, called Ensemble-based iTerative Information Distillation (ETID), to achieve efficient data erasure while preserving the business value of predictive models. ETID incorporates a new ensemble learning method to build an accurate predictive model that can facilitate handling data erasure requests. ETID also introduces an innovative distillation-based unlearning method tailored to the constructed ensemble model to enable efficient and effective data erasure. Extensive experiments demonstrate that ETID outperforms various state-of-the-art methods and can deliver high-quality unlearned models with efficiency. We also highlight ETID's potential as a crucial tool for fostering a legitimate and thriving market for data and predictive services.
- Abstract(参考訳): 最近のプライバシー規制(GDPR)は、データを対象とする‘Right to Be Forgotten’(RTBF)を許可し、データ対象からのデータの消去要求を満たすよう企業に委任している。
しかし、RTBFの規制に従えば、特によく訓練された予測モデルから特定のトレーニングデータを消去するよう求められたとき、企業は大きな課題に直面します。
研究者は、高速なデータ消去を目的とした機械学習手法を導入しているが、これらの手法は、しばしばモデル性能(例えば精度)の維持を見落としている。
この研究は、予測モデルのビジネス価値を保ちながら効率的なデータ消去を実現するために、Ensemble-based iTerative Information Distillation (ETID)と呼ばれる総合的な機械学習学習フレームワークを開発する。
ETIDには、データ消去要求の処理を容易にする正確な予測モデルを構築するための、新しいアンサンブル学習手法が組み込まれている。
ETIDはまた、効率的な効率的なデータ消去を可能にするために、構築されたアンサンブルモデルに合わせて、革新的な蒸留に基づく未学習手法も導入している。
広範な実験により、ETIDは様々な最先端の手法より優れており、高品質な未学習モデルを効率よく提供できることが示されている。
また、ETIDがデータおよび予測サービスの合法的で繁栄する市場を育むための重要なツールである可能性を強調します。
関連論文リスト
- Privacy Preservation through Practical Machine Unlearning [0.0]
本稿では,SISAフレームワークを用いたNative RetrainingやExact Unlearningなどの手法について検討する。
部分的にラベル付けされたデータセットがもたらす課題に対処するために、未学習の原則をPositive Unlabeled (PU) Learningに統合する可能性を探る。
論文 参考訳(メタデータ) (2025-02-15T02:25:27Z) - A Scalable Approach to Covariate and Concept Drift Management via Adaptive Data Segmentation [0.562479170374811]
多くの現実世界のアプリケーションでは、継続的機械学習(ML)システムは不可欠だが、データドリフトが困難である。
伝統的なドリフト適応法は典型的にはアンサンブル技術を用いてモデルを更新し、しばしばドリフトされた歴史データを破棄する。
ドリフトしたデータをモデルトレーニングプロセスに明示的に組み込むことは、モデルの精度と堅牢性を大幅に向上させる、と我々は主張する。
論文 参考訳(メタデータ) (2024-11-23T17:35:23Z) - RESTOR: Knowledge Recovery through Machine Unlearning [71.75834077528305]
Webスケールコーパスでトレーニングされた大規模な言語モデルは、望ましくないデータポイントを記憶することができる。
これらのデータポイントを消去する目的で、多くの機械学習アルゴリズムが提案されている。
本稿では,機械学習アルゴリズムが対象データ消去を行う能力を評価する,機械学習のためのRESTORフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-31T20:54:35Z) - Learn while Unlearn: An Iterative Unlearning Framework for Generative Language Models [49.043599241803825]
Iterative Contrastive Unlearning (ICU)フレームワークは3つのコアコンポーネントで構成されている。
知識未学習誘導モジュールは、未学習の損失を通じて特定の知識を除去する。
Contrastive Learning Enhancementモジュールは、純粋な未学習の目標に対してモデルの表現力を維持する。
また、特定のデータ片の未学習範囲を動的に評価し、反復的な更新を行う反復未学習リファインメントモジュールも用意されている。
論文 参考訳(メタデータ) (2024-07-25T07:09:35Z) - Exploring Fairness in Educational Data Mining in the Context of the Right to be Forgotten [16.03102654663785]
教育データマイニング(EDM)コミュニティでは、機械学習が教育上の課題に対処するパターンや構造を発見することに成功している。
忘れられる権利の需要が高まっているため、機密データとその影響を忘れる機械学習モデルの必要性が高まっている。
予測精度を維持しつつ,学習モデルの公平性を損なうような,新たな選択的忘れ攻撃のクラスを導入する。
論文 参考訳(メタデータ) (2024-05-27T03:35:50Z) - Incremental Self-training for Semi-supervised Learning [56.57057576885672]
ISTは単純だが有効であり、既存の自己学習に基づく半教師あり学習手法に適合する。
提案したISTを5つのデータセットと2種類のバックボーンで検証し,認識精度と学習速度を効果的に向上させる。
論文 参考訳(メタデータ) (2024-04-14T05:02:00Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
大規模言語モデル(LLM)はAIの進歩の基礎となっている。
LLMは機密情報、偏見情報、著作権情報を記憶し、広めることによってリスクを生じさせる。
機械学習は、これらの懸念を軽減するための最先端のソリューションとして現れます。
論文 参考訳(メタデータ) (2024-03-23T09:26:15Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Fair Machine Unlearning: Data Removal while Mitigating Disparities [5.724350004671127]
忘れられる権利は、EUのジェネラル・レギュレーション(ジェネラル・レギュレーション)によって概説される基本原則である。
残ったデータに再トレーニングすることで、ナイーティブに「期待」を達成できる。
学習」は、フェアネスのような現実世界のアプリケーションにとって重要な他の特性に影響を及ぼす。
論文 参考訳(メタデータ) (2023-07-27T10:26:46Z) - Striving for data-model efficiency: Identifying data externalities on
group performance [75.17591306911015]
信頼できる、効果的で責任ある機械学習システムの構築は、トレーニングデータとモデリング決定の違いが、予測パフォーマンスにどのように影響するかを理解することに集中する。
我々は、特定のタイプのデータモデル非効率性に注目し、一部のソースからトレーニングデータを追加することで、集団の重要なサブグループで評価されるパフォーマンスを実際に低下させることができる。
以上の結果から,データ効率が正確かつ信頼性の高い機械学習の鍵となることが示唆された。
論文 参考訳(メタデータ) (2022-11-11T16:48:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。