論文の概要: Enhancing Imbalance Learning: A Novel Slack-Factor Fuzzy SVM Approach
- arxiv url: http://arxiv.org/abs/2411.17128v1
- Date: Tue, 26 Nov 2024 05:47:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:34:16.395477
- Title: Enhancing Imbalance Learning: A Novel Slack-Factor Fuzzy SVM Approach
- Title(参考訳): 不均衡学習の強化:新しいSlack-Factor Fuzzy SVMアプローチ
- Authors: M. Tanveer, Anushka Tiwari, Mushir Akhtar, C. T. Lin,
- Abstract要約: サポートベクターマシン(FSVM)は、様々なファジィメンバシップをサンプルに割り当てることで、クラス不均衡に対処する。
最近開発されたslack-factor-based FSVM(SFFSVM)は、slack Factorを使用して、誤分類可能性に基づいてファジィメンバシップを調整することで、従来のFSVMを改善している。
そこで我々は,新しい位置パラメータを導入する改良されたスラックファクターベースFSVM(ISFFSVM)を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In real-world applications, class-imbalanced datasets pose significant challenges for machine learning algorithms, such as support vector machines (SVMs), particularly in effectively managing imbalance, noise, and outliers. Fuzzy support vector machines (FSVMs) address class imbalance by assigning varying fuzzy memberships to samples; however, their sensitivity to imbalanced datasets can lead to inaccurate assessments. The recently developed slack-factor-based FSVM (SFFSVM) improves traditional FSVMs by using slack factors to adjust fuzzy memberships based on misclassification likelihood, thereby rectifying misclassifications induced by the hyperplane obtained via different error cost (DEC). Building on SFFSVM, we propose an improved slack-factor-based FSVM (ISFFSVM) that introduces a novel location parameter. This novel parameter significantly advances the model by constraining the DEC hyperplane's extension, thereby mitigating the risk of misclassifying minority class samples. It ensures that majority class samples with slack factor scores approaching the location threshold are assigned lower fuzzy memberships, which enhances the model's discrimination capability. Extensive experimentation on a diverse array of real-world KEEL datasets demonstrates that the proposed ISFFSVM consistently achieves higher F1-scores, Matthews correlation coefficients (MCC), and area under the precision-recall curve (AUC-PR) compared to baseline classifiers. Consequently, the introduction of the location parameter, coupled with the slack-factor-based fuzzy membership, enables ISFFSVM to outperform traditional approaches, particularly in scenarios characterized by severe class disparity. The code for the proposed model is available at \url{https://github.com/mtanveer1/ISFFSVM}.
- Abstract(参考訳): 現実世界のアプリケーションでは、クラス不均衡データセットは、サポートベクターマシン(SVM)、特に非バランス、ノイズ、アウトレーヤの効果的管理において、機械学習アルゴリズムに重大な課題をもたらす。
ファジィサポートベクトルマシン(FSVM)は、様々なファジィメンバシップをサンプルに割り当てることで、クラス不均衡に対処する。
最近開発されたslack-factor-based FSVM (SFFSVM) は、slack factor を用いてファジィなメンバシップを調整することで従来のFSVMを改善し、異なるエラーコスト (DEC) で得られたハイパープレーンによって誘導される誤分類の修正を行う。
SFFSVMを基盤として,新しい位置パラメータを導入し,スラック係数に基づくFSVM(ISFFSVM)の改良を提案する。
この新しいパラメータは、DECハイパープレーンの拡張を制限し、マイノリティクラスサンプルの誤分類のリスクを軽減することにより、モデルを大幅に改善する。
位置閾値に近づくスラック係数スコアを持つ多数クラスのサンプルが、ファジィメンバシップの下位に割り当てられることを保証することで、モデルの識別能力が向上する。
実世界のKEELデータセットの多種多様な実験により、提案したISFFSVMは、ベースライン分類器と比較して高いF1スコア、マタイズ相関係数(MCC)、高精度リコール曲線(AUC-PR)以下の領域を一貫して達成していることが示された。
その結果、位置パラメータの導入とスラックファクターベースのファジィメンバシップが組み合わさって、ISFFSVMは従来のアプローチよりも優れている。
提案されたモデルのコードは \url{https://github.com/mtanveer1/ISFFSVM} で公開されている。
関連論文リスト
- Intuitionistic Fuzzy Universum Twin Support Vector Machine for Imbalanced Data [0.0]
機械学習手法の大きな問題の1つは、不均衡なデータセットを分類することである。
不均衡データ(IFUTSVM-ID)のための直観的ファジィユニバームツインサポートベクトルマシンを提案する。
雑音や外周の影響を軽減するため,直観主義的なファジィ・メンバシップ・スキームを用いる。
論文 参考訳(メタデータ) (2024-10-27T04:25:42Z) - Projection based fuzzy least squares twin support vector machine for
class imbalance problems [0.9668407688201361]
本稿では,不均衡なクラスとノイズの多いデータセットを扱うファジィに基づく新しい手法を提案する。
提案アルゴリズムは,複数のベンチマークおよび合成データセットを用いて評価する。
論文 参考訳(メタデータ) (2023-09-27T14:28:48Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
不均衡データセットは、様々な現実世界のアプリケーションで一般的に見られ、分類器の訓練において重要な課題が提示されている。
マイノリティクラスとマイノリティクラスの両方のデータサンプルを混合することにより、反復的に合成サンプルを生成することを提案する。
提案するフレームワークの有効性を,7つの公開ベンチマークデータセットを用いて広範な実験により実証する。
論文 参考訳(メタデータ) (2023-08-28T18:48:34Z) - Graph Embedded Intuitionistic Fuzzy Random Vector Functional Link Neural
Network for Class Imbalance Learning [4.069144210024564]
クラス不均衡学習(GE-IFRVFL-CIL)モデルのためのグラフ埋め込み直観的ファジィRVFLを提案する。
提案したGE-IFRVFL-CILモデルは、クラス不均衡問題に対処し、ノイズとアウトレーヤの有害な効果を軽減し、データセットの固有の幾何学的構造を保存するための有望な解決策を提供する。
論文 参考訳(メタデータ) (2023-07-15T20:45:45Z) - Beyond ADMM: A Unified Client-variance-reduced Adaptive Federated
Learning Framework [82.36466358313025]
我々はFedVRAと呼ばれる原始二重FLアルゴリズムを提案し、このアルゴリズムはグローバルモデルの分散還元レベルとバイアスを適応的に制御することができる。
半教師付き画像分類タスクに基づく実験は,既存の手法よりもFedVRAの方が優れていることを示す。
論文 参考訳(メタデータ) (2022-12-03T03:27:51Z) - Fed-CBS: A Heterogeneity-Aware Client Sampling Mechanism for Federated
Learning via Class-Imbalance Reduction [76.26710990597498]
本研究では,ランダムに選択したクライアントからのグループデータのクラス不均衡が,性能の大幅な低下につながることを示す。
我々のキーとなる観測に基づいて、我々は効率的なクライアントサンプリング機構、すなわちフェデレートクラスバランスサンプリング(Fed-CBS)を設計する。
特に、クラス不均衡の尺度を提案し、その後、同型暗号化を用いてプライバシー保護方式でこの尺度を導出する。
論文 参考訳(メタデータ) (2022-09-30T05:42:56Z) - Handling Imbalanced Classification Problems With Support Vector Machines
via Evolutionary Bilevel Optimization [73.17488635491262]
サポートベクトルマシン(SVM)は、バイナリ分類問題に対処する一般的な学習アルゴリズムである。
この記事では、EBCS-SVMについて紹介する。
論文 参考訳(メタデータ) (2022-04-21T16:08:44Z) - Learning with Multiclass AUC: Theory and Algorithms [141.63211412386283]
ROC曲線 (AUC) の下の領域は、不均衡学習やレコメンダシステムといった問題に対するよく知られたランキング基準である。
本稿では,マルチクラスAUCメトリクスを最適化することで,多クラススコアリング関数を学習する問題について検討する。
論文 参考訳(メタデータ) (2021-07-28T05:18:10Z) - Weighted Least Squares Twin Support Vector Machine with Fuzzy Rough Set
Theory for Imbalanced Data Classification [0.483420384410068]
サポートベクトルマシン(SVM)は、分類問題を解決するために開発された強力な教師付き学習ツールである。
重み付き最小二乗支援ベクトルマシンFRLSTSVMにおけるファジィ粗集合理論を不均衡データの分類に効率的に利用する手法を提案する。
論文 参考訳(メタデータ) (2021-05-03T22:33:39Z) - Label-Imbalanced and Group-Sensitive Classification under
Overparameterization [32.923780772605596]
ラベルの不均衡でグループに敏感な分類は、関連するメトリクスを最適化するための標準トレーニングアルゴリズムを適切に修正することを目指す。
標準実証的リスク最小化に対するロジット調整による損失修正は,一般的には効果がない可能性がある。
本研究では, 2つの共通する不均衡(ラベル/グループ)を統一的に処理し, 敏感群の二値分類に自然に適用できることを示した。
論文 参考訳(メタデータ) (2021-03-02T08:09:43Z) - Deep F-measure Maximization for End-to-End Speech Understanding [52.36496114728355]
本稿では,F測度に対する微分可能な近似法を提案し,標準バックプロパゲーションを用いてネットワークをトレーニングする。
我々は、アダルト、コミュニティ、犯罪の2つの標準フェアネスデータセットの実験を行い、ATISデータセットの音声・インテリジェンス検出と音声・COCOデータセットの音声・イメージ概念分類を行った。
これらの4つのタスクのすべてにおいて、F測定は、クロスエントロピー損失関数で訓練されたモデルと比較して、最大8%の絶対的な絶対的な改善を含む、マイクロF1スコアの改善をもたらす。
論文 参考訳(メタデータ) (2020-08-08T03:02:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。