論文の概要: Autoencoder Enhanced Realised GARCH on Volatility Forecasting
- arxiv url: http://arxiv.org/abs/2411.17136v1
- Date: Tue, 26 Nov 2024 06:05:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:33:47.888801
- Title: Autoencoder Enhanced Realised GARCH on Volatility Forecasting
- Title(参考訳): ボラティリティ予測に基づくオートエンコーダのGARCH向上
- Authors: Qianli Zhao, Chao Wang, Richard Gerlach, Giuseppe Storti, Lingxiang Zhang,
- Abstract要約: この論文は、様々な実現されたボラティリティ指標がボラティリティ予測に与える影響を合成することを目的としている。
本稿では,自動エンコーダ生成合成実現尺度を組み込んだRealized GARCHモデルの拡張を提案する。
- 参考スコア(独自算出の注目度): 2.1902930328664914
- License:
- Abstract: Realised volatility has become increasingly prominent in volatility forecasting due to its ability to capture intraday price fluctuations. With a growing variety of realised volatility estimators, each with unique advantages and limitations, selecting an optimal estimator may introduce challenges. In this thesis, aiming to synthesise the impact of various realised volatility measures on volatility forecasting, we propose an extension of the Realised GARCH model that incorporates an autoencoder-generated synthetic realised measure, combining the information from multiple realised measures in a nonlinear manner. Our proposed model extends existing linear methods, such as Principal Component Analysis and Independent Component Analysis, to reduce the dimensionality of realised measures. The empirical evaluation, conducted across four major stock markets from January 2000 to June 2022 and including the period of COVID-19, demonstrates both the feasibility of applying an autoencoder to synthesise volatility measures and the superior effectiveness of the proposed model in one-step-ahead rolling volatility forecasting. The model exhibits enhanced flexibility in parameter estimations across each rolling window, outperforming traditional linear approaches. These findings indicate that nonlinear dimension reduction offers further adaptability and flexibility in improving the synthetic realised measure, with promising implications for future volatility forecasting applications.
- Abstract(参考訳): ボラティリティは、日内価格変動を捉える能力により、ボラティリティ予測においてますます顕著になっている。
様々な実現されたボラティリティ推定器によって、それぞれに固有の利点と制限があるため、最適な推定器を選択することは困難をもたらす可能性がある。
本稿では, ボラティリティ予測における様々な変動度尺度の影響を合成することを目的として, 自己エンコーダ生成合成実効化尺度を組み込んだ実効化GARCHモデルの拡張を提案し, 複数の実効化測度からの情報を非線形に組み合わせた。
提案モデルは,主成分分析や独立成分分析などの既存の線形手法を拡張して,実測値の次元性を低減する。
2000年1月から2022年6月までの4つの主要株式市場で実施された実証的な評価は、自己エンコーダによるボラティリティ対策の総合化の可能性と、1段階のローリングボラティリティ予測におけるモデルの有効性の両方を示している。
このモデルでは、各ローリングウィンドウにおけるパラメータ推定の柔軟性が向上し、従来の線形アプローチよりも優れていた。
これらの結果から, 非線形次元の減少は, 合成実測値の改善にさらなる適応性と柔軟性をもたらし, 将来のボラティリティ予測への応用に有望な意味があることが示唆された。
関連論文リスト
- A Dynamic Approach to Stock Price Prediction: Comparing RNN and Mixture of Experts Models Across Different Volatility Profiles [0.0]
MoEフレームワークは揮発性株のRNNと安定株の線形モデルを組み合わせて、ゲーティングネットワークを介して各モデルの重量を動的に調整する。
その結果,MoE法は様々な変動性プロファイルの予測精度を著しく向上させることがわかった。
MoEモデルの適応性は個々のモデルよりも優れており、Mean Squared Error(MSE)やMean Absolute Error(MAE)などのエラーを減らすことができる。
論文 参考訳(メタデータ) (2024-10-04T14:36:21Z) - Loss-based Bayesian Sequential Prediction of Value at Risk with a Long-Memory and Non-linear Realized Volatility Model [3.00982257854028]
リスク予測(VaR)には,長期記憶と非線形実現ボラティリティモデルクラスが提案されている。
このモデルはRNN-HARと呼ばれ、異種自己回帰(HAR)モデルを拡張している。
連続モンテカルロによる損失に基づく一般化ベイズ予想は、モデル推定と逐次予測に使用される。
論文 参考訳(メタデータ) (2024-08-24T14:17:31Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Structured Dynamic Pricing: Optimal Regret in a Global Shrinkage Model [50.06663781566795]
消費者の嗜好と価格感が時間とともに変化する動的モデルを考える。
我々は,モデルパラメータの順序を事前に把握している透視者と比較して,収益損失が予想される,後悔による動的価格政策の性能を計測する。
提案した政策の最適性を示すだけでなく,政策立案のためには,利用可能な構造情報を組み込むことが不可欠であることを示す。
論文 参考訳(メタデータ) (2023-03-28T00:23:23Z) - Deep Learning Enhanced Realized GARCH [6.211385208178938]
本稿では,深層学習(LSTM)とボラティリティ対策の併用によるボラティリティモデリングの新しい手法を提案する。
このLSTMで強化されたGARCHフレームワークは、金融経済学、高周波取引データ、ディープラーニングによるモデリングの進歩を取り入れ、蒸留する。
論文 参考訳(メタデータ) (2023-02-16T00:20:43Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions [53.37679435230207]
本稿では,Dilated Causal Convolutionsに基づくDeepVolモデルを提案する。
実験結果から,提案手法は高頻度データからグローバルな特徴を効果的に学習できることが示唆された。
論文 参考訳(メタデータ) (2022-09-23T16:13:47Z) - Time varying regression with hidden linear dynamics [74.9914602730208]
線形力学系に従って未知のパラメータが進化することを前提とした時間変化線形回帰モデルを再検討する。
反対に、基礎となる力学が安定である場合、このモデルのパラメータは2つの通常の最小二乗推定と組み合わせることで、データから推定できることが示される。
論文 参考訳(メタデータ) (2021-12-29T23:37:06Z) - Low-Rank Temporal Attention-Augmented Bilinear Network for financial
time-series forecasting [93.73198973454944]
ディープラーニングモデルは、金融時系列データの予測問題など、さまざまな領域から来る多くの問題において、大幅なパフォーマンス改善をもたらしている。
近年,制限順序書の時系列予測の効率的かつ高性能なモデルとして,時間的注意強化バイリニアネットワークが提案されている。
本稿では,モデルの低ランクテンソル近似を提案し,トレーニング可能なパラメータの数をさらに削減し,その速度を向上する。
論文 参考訳(メタデータ) (2021-07-05T10:15:23Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
公衆衛生におけるリアルタイム予測では、データ収集は簡単で要求の多いタスクである。
過去の文献では「バックフィル」現象とそのモデル性能への影響についてはほとんど研究されていない。
我々は、与えられたモデルの予測をリアルタイムで洗練することを目的とした、新しい問題とニューラルネットワークフレームワークBack2Futureを定式化する。
論文 参考訳(メタデータ) (2021-06-08T14:48:20Z) - A generative adversarial network approach to calibration of local
stochastic volatility models [2.1485350418225244]
局所ボラティリティ(LSV)モデルのキャリブレーションのための完全データ駆動手法を提案する。
我々は、フィードフォワードニューラルネットワークのファミリーによってレバレッジ関数をパラメータ化し、利用可能な市場オプション価格から直接パラメータを学習する。
これは、ニューラルSDEと(因果)生成的敵ネットワークの文脈で見る必要がある。
論文 参考訳(メタデータ) (2020-05-05T21:26:20Z) - Ensemble Forecasting for Intraday Electricity Prices: Simulating
Trajectories [0.0]
近年の研究では、時間単位のドイツの日内連続市場は弱い状態にあることが示されている。
時間内電力価格の確率予測は、トレーディングウィンドウ毎に軌跡をシミュレートして行う。
この調査は、過去3時間でドイツの日内連続市場における価格分布を予測することを目的としているが、このアプローチは、特にヨーロッパでは、他の連続市場への適用を可能にする。
論文 参考訳(メタデータ) (2020-05-04T10:21:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。