論文の概要: Time-varying Factor Augmented Vector Autoregression with Grouped Sparse Autoencoder
- arxiv url: http://arxiv.org/abs/2503.04386v1
- Date: Thu, 06 Mar 2025 12:37:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-07 16:01:28.250612
- Title: Time-varying Factor Augmented Vector Autoregression with Grouped Sparse Autoencoder
- Title(参考訳): グループスパースオートエンコーダを用いた時間可変ベクトル自己回帰
- Authors: Yiyong Luo, Brooks Paige, Jim Griffin,
- Abstract要約: 本稿では、Spyke-and-Slab Lassoを前に採用したGrouped Sparseオートエンコーダを紹介する。
時間変化パラメータをVARコンポーネントに組み込んで、進化する経済力学をよりよく捉えます。
我々の米国経済への実証的な応用は、グループスパースオートエンコーダがより解釈可能な要素を生み出すことを示す。
- 参考スコア(独自算出の注目度): 4.769637827387851
- License:
- Abstract: Recent economic events, including the global financial crisis and COVID-19 pandemic, have exposed limitations in linear Factor Augmented Vector Autoregressive (FAVAR) models for forecasting and structural analysis. Nonlinear dimension techniques, particularly autoencoders, have emerged as promising alternatives in a FAVAR framework, but challenges remain in identifiability, interpretability, and integration with traditional nonlinear time series methods. We address these challenges through two contributions. First, we introduce a Grouped Sparse autoencoder that employs the Spike-and-Slab Lasso prior, with parameters under this prior being shared across variables of the same economic category, thereby achieving semi-identifiability and enhancing model interpretability. Second, we incorporate time-varying parameters into the VAR component to better capture evolving economic dynamics. Our empirical application to the US economy demonstrates that the Grouped Sparse autoencoder produces more interpretable factors through its parsimonious structure; and its combination with time-varying parameter VAR shows superior performance in both point and density forecasting. Impulse response analysis reveals that monetary policy shocks during recessions generate more moderate responses with higher uncertainty compared to expansionary periods.
- Abstract(参考訳): 世界的な金融危機や新型コロナウイルス(COVID-19)のパンデミックを含む最近の経済現象は、予測と構造解析のための線形因子拡張ベクトル自己回帰(FAVAR)モデルに限界を露呈している。
非線形次元技術(特にオートエンコーダ)は、FAVARフレームワークにおいて有望な代替手段として登場したが、識別可能性、解釈可能性、従来の非線形時系列手法との統合に課題が残っている。
私たちは2つのコントリビューションを通じてこれらの課題に対処します。
まず、スパイク・アンド・スラブ・ラッソを用いたグループスパースオートエンコーダを導入し、このパラメータを同じ経済カテゴリの変数間で共有することにより、半識別性を実現し、モデルの解釈可能性を高める。
第2に、時間変化パラメータをVARコンポーネントに組み込んで、進化する経済力学をよりよく捉えます。
我々の米国経済への実証的な応用は、グループスパースオートエンコーダがその相似構造を通してより解釈可能な要素を生成することを示し、時間変化パラメータVARと組み合わせることで、点と密度の予測において優れた性能を示す。
インパルス応答分析により、不況時の金融政策ショックは、拡張期間よりも高い不確実性でより穏健な反応を生じさせることが明らかとなった。
関連論文リスト
- Autoencoder Enhanced Realised GARCH on Volatility Forecasting [2.1902930328664914]
この論文は、様々な実現されたボラティリティ指標がボラティリティ予測に与える影響を合成することを目的としている。
本稿では,自動エンコーダ生成合成実現尺度を組み込んだRealized GARCHモデルの拡張を提案する。
論文 参考訳(メタデータ) (2024-11-26T06:05:44Z) - Financial Time-Series Forecasting: Towards Synergizing Performance And
Interpretability Within a Hybrid Machine Learning Approach [2.0213537170294793]
本稿では、ハイブリッド機械学習アルゴリズムの比較研究を行い、モデル解釈可能性の向上に活用する。
本稿では,金融時系列予測において出現する潜伏関係や複雑なパターンの発掘を目的とした,分解,自己相関関数,指数的三重予測など,時系列統計の事前処理技術に関する体系的な概要を述べる。
論文 参考訳(メタデータ) (2023-12-31T16:38:32Z) - Modeling Systemic Risk: A Time-Varying Nonparametric Causal Inference
Framework [27.025720728622897]
時系列ネットワークにおける因果構造を推定するための非パラメトリック・時間変化指向情報グラフ(TV-DIG)フレームワークを提案する。
本枠組みは、金融ネットワーク内の主要資産・産業セクター間の相互接続性とシステム的リスクの進化を特定し、監視するものである。
論文 参考訳(メタデータ) (2023-12-27T20:09:57Z) - It Is Time To Steer: A Scalable Framework for Analysis-driven Attack Graph Generation [50.06412862964449]
アタックグラフ(AG)は、コンピュータネットワークに対するマルチステップ攻撃に対するサイバーリスクアセスメントをサポートする最も適したソリューションである。
現在の解決策は、アルゴリズムの観点から生成問題に対処し、生成が完了した後のみ解析を仮定することである。
本稿では,アナリストがいつでもシステムに問い合わせることのできる新しいワークフローを通じて,従来のAG分析を再考する。
論文 参考訳(メタデータ) (2023-12-27T10:44:58Z) - Understanding Augmentation-based Self-Supervised Representation Learning
via RKHS Approximation and Regression [53.15502562048627]
最近の研究は、自己教師付き学習とグラフラプラシアン作用素のトップ固有空間の近似との関係を構築している。
この研究は、増強に基づく事前訓練の統計的分析に発展する。
論文 参考訳(メタデータ) (2023-06-01T15:18:55Z) - Structured Dynamic Pricing: Optimal Regret in a Global Shrinkage Model [50.06663781566795]
消費者の嗜好と価格感が時間とともに変化する動的モデルを考える。
我々は,モデルパラメータの順序を事前に把握している透視者と比較して,収益損失が予想される,後悔による動的価格政策の性能を計測する。
提案した政策の最適性を示すだけでなく,政策立案のためには,利用可能な構造情報を組み込むことが不可欠であることを示す。
論文 参考訳(メタデータ) (2023-03-28T00:23:23Z) - Interpreting and predicting the economy flows: A time-varying parameter
global vector autoregressive integrated the machine learning model [0.0]
本稿では,先進地域経済変数の予測と分析を行うための時間変化パラメータグローバルベクトル自己回帰フレームワークを提案する。
提案したモデルが,すべての経済変数における説得力のあるインサンプルと,異なる周波数の経済入力を持つ比較的高精度なアウト・オブ・サンプル予測を示す。
論文 参考訳(メタデータ) (2022-07-31T06:24:15Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
伝統的な時系列計量法は、価格力学を駆動する多層相互作用の真の複雑さを捉えることができないことが多い。
最先端の2次最適化アルゴリズムを採用することで、時間的注意を払ってベイジアン双線形ニューラルネットワークを訓練する。
予測分布を用いて推定パラメータとモデル予測に関連する誤差や不確実性を解析することにより、ベイズモデルと従来のML代替品を徹底的に比較する。
論文 参考訳(メタデータ) (2022-03-07T18:59:54Z) - Low-Rank Temporal Attention-Augmented Bilinear Network for financial
time-series forecasting [93.73198973454944]
ディープラーニングモデルは、金融時系列データの予測問題など、さまざまな領域から来る多くの問題において、大幅なパフォーマンス改善をもたらしている。
近年,制限順序書の時系列予測の効率的かつ高性能なモデルとして,時間的注意強化バイリニアネットワークが提案されている。
本稿では,モデルの低ランクテンソル近似を提案し,トレーニング可能なパラメータの数をさらに削減し,その速度を向上する。
論文 参考訳(メタデータ) (2021-07-05T10:15:23Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
本稿では,観測力学を強制線形系としてモデル化した新しい負荷予測手法を提案する。
固有線型力学の利用は、解釈可能性やパーシモニーの観点から、多くの望ましい性質を提供することを示す。
電力グリッドからの負荷データを用いたテストケースの結果が提示される。
論文 参考訳(メタデータ) (2020-10-08T20:25:52Z) - Deep Switching Auto-Regressive Factorization:Application to Time Series
Forecasting [16.934920617960085]
DSARFは、時間依存重みと空間依存因子の間の積変数による高次元データを近似する。
DSARFは、深い切替ベクトル自己回帰因子化の観点から重みをパラメータ化するという最先端技術とは異なる。
本実験は, 最先端手法と比較して, DSARFの長期的, 短期的予測誤差において優れた性能を示すものである。
論文 参考訳(メタデータ) (2020-09-10T20:15:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。