論文の概要: Fault Localization from the Semantic Code Search Perspective
- arxiv url: http://arxiv.org/abs/2411.17230v1
- Date: Tue, 26 Nov 2024 08:52:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:36:41.056311
- Title: Fault Localization from the Semantic Code Search Perspective
- Title(参考訳): 意味的コード検索の観点からのフォールトローカライゼーション
- Authors: Yihao Qin, Shangwen Wang, Yan Lei, Zhuo Zhang, Bo Lin, Xin Peng, Liqian Chen, Xiaoguang Mao,
- Abstract要約: 本稿では,障害局所化タスクをクエリ生成と障害検索の2つのステップに分解する障害ローカライザを提案する。
CosFLはTop-1で324のバグをローカライズすることに成功し、最先端のアプローチを26.6%-57.3%上回った。
- 参考スコア(独自算出の注目度): 8.287095430092835
- License:
- Abstract: The software development process is characterized by an iterative cycle of continuous functionality implementation and debugging, essential for the enhancement of software quality and adaptability to changing requirements. This process incorporates two isolatedly studied tasks: Code Search (CS), which retrieves reference code from a code corpus to aid in code implementation, and Fault Localization (FL), which identifies code entities responsible for bugs within the software project to boost software debugging. These two tasks exhibit similarities since they both address search problems. Notably, CS techniques have demonstrated greater effectiveness than FL ones, possibly because of the precise semantic details of the required code offered by natural language queries, which are not readily accessible to FL methods. Drawing inspiration from this, we hypothesize that a fault localizer could achieve greater proficiency if semantic information about the buggy methods were made available. Based on this idea, we propose CosFL, an FL approach that decomposes the FL task into two steps: query generation, which describes the functionality of the problematic code in natural language, and fault retrieval, which uses CS to find program elements semantically related to the query. Specifically, to depict the buggy functionalities and generate high-quality queries, CosFL extensively harnesses the code analysis, semantic comprehension, and decision-making capabilities of LLMs. Moreover, to enhance the accuracy of CS, CosFL captures varying levels of context information and employs a multi-granularity code search strategy, which facilitates a more precise identification of buggy methods from a holistic view. The evaluation on 835 real bugs from 23 Java projects shows that CosFL successfully localizes 324 bugs within Top-1, which significantly outperforms the state-of-the-art approaches by 26.6%-57.3%.
- Abstract(参考訳): ソフトウェア開発プロセスの特徴は、継続的機能の実装とデバッグの反復サイクルであり、ソフトウェア品質の強化と要求の変更への適応性に不可欠である。
このプロセスには、コード実装を支援するためにコードコーパスから参照コードを取得するコード検索(CS)と、ソフトウェアデバッグを促進するためにソフトウェアプロジェクト内のバグに責任があるコードエンティティを特定するフォールトローカライゼーション(FL)という2つの独立したタスクが含まれている。
これら2つのタスクは、どちらも検索問題に対処するため、類似性を示す。
特に、CS技術はFL法よりも有効性が高いことが示されており、おそらくはFL法ではアクセスできない自然言語クエリによって提供される要求コードの正確なセマンティックな詳細が原因である。
このことからインスピレーションを得て,バグジィ手法のセマンティック情報が利用可能であれば,障害ローカライザは高い精度を達成できるという仮説を立てた。
このアイデアに基づいて、FLタスクを2つのステップに分解する FL アプローチであるCosFL と、自然言語における問題コードの機能を記述するクエリ生成と、CS を用いてクエリに関連するプログラム要素を意味的に検索するフォールト検索を提案する。
特に、バグの多い機能を描写し、高品質なクエリを生成するために、CosFLは、LLMのコード解析、意味理解、意思決定能力を広範囲に活用しています。
さらに、CSの精度を高めるために、CosFLは様々なレベルのコンテキスト情報をキャプチャし、多粒度コード検索戦略を用いて、全体的視点からバギーメソッドのより正確な識別を容易にする。
23のJavaプロジェクトによる835の実際のバグの評価は、CosFLがTop-1内で324のバグをローカライズすることに成功し、最先端のアプローチを26.6%-57.3%上回ったことを示している。
関連論文リスト
- Crystal: Illuminating LLM Abilities on Language and Code [58.5467653736537]
本稿では,自然言語と符号化機能の統合性を高めるための事前学習戦略を提案する。
結果のモデルであるCrystalは、両方のドメインで顕著な能力を示します。
論文 参考訳(メタデータ) (2024-11-06T10:28:46Z) - Impact of Large Language Models of Code on Fault Localization [2.936007114555107]
本稿では,FLタスクのための大規模言語モデルの微調整のための,単純だが効果的なシーケンス生成手法を提案する。
具体的には、FLタスク用の代表エンコーダ、エンコーダデコーダ、デコーダベースの13のLLMCを微調整する。
実験結果から, LLMCは50.6%, 64.2%, 72.3%の誤差位置を検出できた。
論文 参考訳(メタデータ) (2024-08-19T02:36:07Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
大規模言語モデル(LLM)は、標準解に比べて短いがより複雑なコードを生成する。
3つのカテゴリと12のサブカテゴリを含む誤ったコードに対するバグの分類を開発し、一般的なバグタイプに対する根本原因を分析する。
そこで本研究では,LLMがバグタイプやコンパイラフィードバックに基づいて生成したコードを批判し,修正することのできる,自己批判を導入した新たな学習自由反復手法を提案する。
論文 参考訳(メタデータ) (2024-07-08T17:27:17Z) - Chain of Targeted Verification Questions to Improve the Reliability of Code Generated by LLMs [10.510325069289324]
LLMが生成するコードの信頼性向上を目的とした自己補充手法を提案する。
当社のアプローチは,初期コード内の潜在的なバグを特定するために,対象とする検証質問(VQ)に基づいています。
本手法は,LLMをターゲットとするVQと初期コードで再プロンプトすることで,潜在的なバグの修復を試みる。
論文 参考訳(メタデータ) (2024-05-22T19:02:50Z) - How Far Have We Gone in Binary Code Understanding Using Large Language Models [51.527805834378974]
バイナリコード理解におけるLarge Language Models(LLM)の有効性を評価するためのベンチマークを提案する。
評価の結果、既存のLLMはバイナリコードをある程度理解でき、それによってバイナリコード解析の効率が向上することが明らかとなった。
論文 参考訳(メタデータ) (2024-04-15T14:44:08Z) - AgentFL: Scaling LLM-based Fault Localization to Project-Level Context [11.147750199280813]
本稿では,ChatGPTに基づくマルチエージェントシステムであるAgentFLについて述べる。
人間の開発者の振る舞いをシミュレートすることで、AgentFLはFLタスクを3段階のプロセスとしてモデル化する。
広く使用されているDefects4J-V1.2.0ベンチマークの評価は、AgentFLがTop-1内の395のバグのうち157をローカライズできることを示している。
論文 参考訳(メタデータ) (2024-03-25T01:58:19Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
2つの主要コンポーネントからなるコード生成の新しいフレームワークであるStepCoderを紹介します。
CCCSは、長いシーケンスのコード生成タスクをCurriculum of Code Completion Subtaskに分割することで、探索課題に対処する。
FGOは、未実行のコードセグメントをマスクすることでのみモデルを最適化し、Fine-Grained Optimizationを提供する。
提案手法は,出力空間を探索し,対応するベンチマークにおいて最先端の手法より優れた性能を発揮する。
論文 参考訳(メタデータ) (2024-02-02T13:14:31Z) - Code Prompting Elicits Conditional Reasoning Abilities in Text+Code LLMs [65.2379940117181]
自然言語の問題をコードに変換する一連のプロンプトであるコードプロンプトを導入します。
コードプロンプトは複数のLLMに対して高速に向上することがわかった。
GPT 3.5を解析した結果,入力問題のコードフォーマッティングが性能向上に不可欠であることが判明した。
論文 参考訳(メタデータ) (2024-01-18T15:32:24Z) - A Quantitative and Qualitative Evaluation of LLM-Based Explainable Fault Localization [12.80414941523501]
AutoFLは、提案された障害位置とともに、バグの説明を生成する。
JavaとPythonの798の現実世界のバグの実験では、AutoFLはメソッドレベルのcc@1を、ベースライン上で最大233.3%改善した。
論文 参考訳(メタデータ) (2023-08-10T10:26:55Z) - A Transformer-based Approach for Source Code Summarization [86.08359401867577]
コードトークン間のペア関係をモデル化することにより,要約のためのコード表現を学習する。
アプローチは単純であるにもかかわらず、最先端技術よりもかなりの差があることが示される。
論文 参考訳(メタデータ) (2020-05-01T23:29:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。