論文の概要: Divergence Inequalities with Applications in Ergodic Theory
- arxiv url: http://arxiv.org/abs/2411.17241v1
- Date: Tue, 26 Nov 2024 09:06:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:33:51.812658
- Title: Divergence Inequalities with Applications in Ergodic Theory
- Title(参考訳): エルゴード理論における多様性の不等式と応用
- Authors: Ian George, Alice Zheng, Akshay Bansal,
- Abstract要約: 2次微分可能な$f$-divergencesに対する$chi2$-divergencesという観点から、ピンスカーの不等式と一般境界の簡単な方法を確立する。
多くの$f$-divergencesに対して、時間同質マルコフ連鎖の収縮率は、$chi2$-divergenceの入力依存収縮係数によって特徴づけられる。
これらの結果は、効率的な計算の保証がないにもかかわらず、量子情報理論におけるPetz $f$-divergencesに拡張する。
- 参考スコア(独自算出の注目度): 1.024113475677323
- License:
- Abstract: The data processing inequality is central to information theory and motivates the study of monotonic divergences. However, it is not clear operationally we need to consider all such divergences. We establish a simple method for Pinsker inequalities as well as general bounds in terms of $\chi^{2}$-divergences for twice-differentiable $f$-divergences. These tools imply new relations for input-dependent contraction coefficients. We use these relations to show for many $f$-divergences the rate of contraction of a time homogeneous Markov chain is characterized by the input-dependent contraction coefficient of the $\chi^{2}$-divergence. This is efficient to compute and the fastest it could converge for a class of divergences. We show similar ideas hold for mixing times. Moreover, we extend these results to the Petz $f$-divergences in quantum information theory, albeit without any guarantee of efficient computation. These tools may have applications in other settings where iterative data processing is relevant.
- Abstract(参考訳): データ処理の不等式は情報理論の中心であり、単調な発散の研究を動機付けている。
しかし、このような相違点をすべて考慮する必要があることは明らかではない。
2次微分可能な$f$-divergencesに対する$\chi^{2}$-divergencesという観点から、ピンスカーの不等式と一般境界の簡単な方法を確立する。
これらのツールは入力依存の収縮係数の新しい関係を示唆している。
我々はこれらの関係を多くの$f$-divergencesに対して、時間同質マルコフ連鎖の収縮率を示すために、$\chi^{2}$-divergenceの入力依存収縮係数によって特徴づけられる。
これは計算に効率的であり、分岐のクラスに収束する速度である。
同様のアイデアが時間の混合に有効であることを示す。
さらに、これらの結果を量子情報理論におけるペッツ$f$-divergencesに拡張するが、効率的な計算の保証はない。
これらのツールは、反復的なデータ処理が関係する他の設定でアプリケーションを保持することができる。
関連論文リスト
- Variance-Reducing Couplings for Random Features [57.73648780299374]
ランダム機能(RF)は、機械学習においてカーネルメソッドをスケールアップする一般的なテクニックである。
ユークリッド空間と離散入力空間の両方で定義されるRFを改善するための結合を求める。
パラダイムとしての分散還元の利点と限界について、驚くほどの結論に達した。
論文 参考訳(メタデータ) (2024-05-26T12:25:09Z) - Computing Marginal and Conditional Divergences between Decomposable
Models with Applications [7.89568731669979]
本稿では,2つの分解可能なモデルの任意の限界分布と条件分布の正確なα-ベータの偏差を計算する手法を提案する。
提案手法を用いて,まずベンチマーク画像データセットに適用することにより,分布変化を解析する方法を示す。
本稿では,現代の超伝導量子コンピュータにおける誤差の定量化手法を提案する。
論文 参考訳(メタデータ) (2023-10-13T14:17:25Z) - Posterior Contraction Rates for Mat\'ern Gaussian Processes on
Riemannian Manifolds [51.68005047958965]
我々は,本質的なガウス過程が実際により優れた性能を発揮することを示す。
我々の研究は、データ効率の異なるレベルを区別するために、よりきめ細かい分析が必要であることを示している。
論文 参考訳(メタデータ) (2023-09-19T20:30:58Z) - Towards Faster Non-Asymptotic Convergence for Diffusion-Based Generative
Models [49.81937966106691]
我々は拡散モデルのデータ生成過程を理解するための非漸近理論のスイートを開発する。
従来の研究とは対照的に,本理論は基本的だが多目的な非漸近的アプローチに基づいて開発されている。
論文 参考訳(メタデータ) (2023-06-15T16:30:08Z) - Compression and Data Similarity: Combination of Two Techniques for
Communication-Efficient Solving of Distributed Variational Inequalities [137.6408511310322]
本稿では、圧縮とデータ類似性という2つの一般的なアプローチの組み合わせについて考察する。
この相乗効果は, 分散分散単調変分不等式の解法において, それぞれ別々に行う方法よりも効果的であることを示す。
論文 参考訳(メタデータ) (2022-06-19T16:38:56Z) - An Improved Analysis of Gradient Tracking for Decentralized Machine
Learning [34.144764431505486]
トレーニングデータが$n$エージェントに分散されるネットワーク上での分散機械学習を検討する。
エージェントの共通の目標は、すべての局所損失関数の平均を最小化するモデルを見つけることである。
ノイズのない場合、$p$を$mathcalO(p-1)$から$mathcalO(p-1)$に改善します。
論文 参考訳(メタデータ) (2022-02-08T12:58:14Z) - A Law of Iterated Logarithm for Multi-Agent Reinforcement Learning [3.655021726150368]
マルチエージェント強化学習(MARL: Multi-Agent Reinforcement Learning)では、複数のエージェントが共通の環境と相互作用し、シーケンシャルな意思決定において共有問題を解く。
我々は、MARLで有用な分散非線形近似スキームの族を反復する新しい法則を導出する。
論文 参考訳(メタデータ) (2021-10-27T08:01:17Z) - Acceleration in Distributed Optimization Under Similarity [72.54787082152278]
集中ノードを持たないエージェントネットワーク上での分散(強い凸)最適化問題について検討する。
$varepsilon$-solutionは$tildemathcalrhoObig(sqrtfracbeta/mu (1-)log1/varepsilonbig)$通信ステップ数で達成される。
この速度は、関心のクラスに適用される分散ゴシップ-アルゴリズムの、初めて(ポリログ因子まで)より低い複雑性の通信境界と一致する。
論文 参考訳(メタデータ) (2021-10-24T04:03:00Z) - $(f,\Gamma)$-Divergences: Interpolating between $f$-Divergences and
Integral Probability Metrics [6.221019624345409]
我々は、$f$-divergences と積分確率メトリクス(IPMs)の両方を仮定する情報理論の分岐を構築するためのフレームワークを開発する。
2段階の質量再分配/物質輸送プロセスとして表現できることが示される。
統計的学習を例として,重み付き,絶対連続的なサンプル分布に対するGAN(generative adversarial network)の訓練において,その優位性を示す。
論文 参考訳(メタデータ) (2020-11-11T18:17:09Z) - Robustly Learning any Clusterable Mixture of Gaussians [55.41573600814391]
本研究では,高次元ガウス混合系の対向ロバスト条件下での効率的な学習性について検討する。
理論的に最適に近い誤り証明である$tildeO(epsilon)$の情報を、$epsilon$-corrupted $k$-mixtureで学習するアルゴリズムを提供する。
我々の主な技術的貢献は、ガウス混合系からの新しい頑健な識別可能性証明クラスターであり、これは正方形の定度証明システムによって捉えることができる。
論文 参考訳(メタデータ) (2020-05-13T16:44:12Z) - Cram\'er-Rao Lower Bounds Arising from Generalized Csisz\'ar Divergences [17.746238062801293]
我々は Csisz'ar $f$-divergences の一般化された族に対する確率分布の幾何学について研究する。
これらの定式化が, 護衛モデルの偏りのない, 効率的な推定手法の発見に繋がることを示す。
論文 参考訳(メタデータ) (2020-01-14T13:41:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。