Polarization and Orbital Angular Momentum Encoded Quantum Toffoli Gate Enabled by Diffractive Neural Networks
- URL: http://arxiv.org/abs/2411.17266v1
- Date: Tue, 26 Nov 2024 09:42:19 GMT
- Title: Polarization and Orbital Angular Momentum Encoded Quantum Toffoli Gate Enabled by Diffractive Neural Networks
- Authors: Qianke Wang, Dawei Lyu, Jun Liu, Jian Wang,
- Abstract summary: Controlled quantum gates play a crucial role in enabling quantum universal operations by facilitating interactions between qubits.
We present an experimental demonstration of a quantum Toffoli gate fully exploiting the polarization and orbital angular momentum of a single photon.
We characterize the gate's performance through quantum state tomography on 216 different input states and quantum process tomography, which yields a process fidelity of $94.05pm 0.02%$.
- Score: 5.153557964788408
- License:
- Abstract: Controlled quantum gates play a crucial role in enabling quantum universal operations by facilitating interactions between qubits. Direct implementation of three-qubit gates simplifies the design of quantum circuits, thereby being conducive to performing complex quantum algorithms. Here, we propose and present an experimental demonstration of a quantum Toffoli gate fully exploiting the polarization and orbital angular momentum of a single photon. The Toffoli gate is implemented using the polarized diffractive neural networks scheme, achieving a mean truth table visibility of $97.27\pm0.20\%$. We characterize the gate's performance through quantum state tomography on 216 different input states and quantum process tomography, which yields a process fidelity of $94.05\pm 0.02\%$. Our method offers a novel approach for realizing the Toffoli gate without requiring exponential optical elements while maintaining extensibility to the implementation of other three-qubit gates.
Related papers
- Quantum Photonic Gates with Two-Dimensional Random Walkers [0.0]
We study quantum photonic gates that utilize continuous time two-dimensional random walking photons.
These gates can be implemented using the inverse design method, where photons randomly walk in a two-dimensional silicon host medium embedded with silicon dioxide scatterers.
arXiv Detail & Related papers (2024-10-02T14:26:05Z) - Experimental realization of universal quantum gates and six-qubit state
using photonic quantum walk [2.331828779757202]
We report the experimental realize of universal set of quantum gates using photonic quantum walk.
We encode multiple qubits using polarization and paths degree of freedom for photon and demonstrate realization of universal set of gates with 100% success probability.
This work marks a significant progress towards using photonic quantum walk for quantum computing.
arXiv Detail & Related papers (2024-03-11T12:32:22Z) - Quantum information processing with superconducting circuits: realizing
and characterizing quantum gates and algorithms in open quantum systems [0.0]
This thesis focuses on quantum information processing using the superconducting device.
For the realization of quantum gates and algorithms, a one-step approach is used.
We suggest faster and more efficient schemes for realizing $X$-rotation and entangling gates for two and three qubits.
arXiv Detail & Related papers (2024-01-14T14:31:17Z) - Universal quantum computation using atoms in cross-cavity systems [0.0]
We theoretically investigate a single-step implementation of both a universal two- (CNOT) and three-qubit (quantum Fredkin) gates in a cross-cavity setup.
Within a high-cooper regime, the system exhibits an atomic-state-dependent $pi$-phase gate involving the two-mode single-photon bright and dark states.
arXiv Detail & Related papers (2023-08-28T20:09:54Z) - High-fidelity parallel entangling gates on a neutral atom quantum
computer [41.74498230885008]
We report the realization of two-qubit entangling gates with 99.5% fidelity on up to 60 atoms in parallel.
These advances lay the groundwork for large-scale implementation of quantum algorithms, error-corrected circuits, and digital simulations.
arXiv Detail & Related papers (2023-04-11T18:00:04Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Universal quantum multi-qubit entangling gates with auxiliary spaces [0.0]
We present an effective quantum circuit for the implementation of a controlled-NOT (CNOT) gate.
The method is extended to the construction of a general n-control-qubit Toffoli gate with (2n-1) qubit-qudit gates and (2n-2) single-qudit gates.
Based on the presented quantum circuits, the polarization CNOT and Toffoli gates with linear optics are designed by operating on the spatial-mode degree of freedom of photons.
arXiv Detail & Related papers (2021-05-22T03:30:22Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUANTIFY is an open-source framework for the quantitative analysis of quantum circuits.
It is based on Google Cirq and is developed with Clifford+T circuits in mind.
For benchmarking purposes QUANTIFY includes quantum memory and quantum arithmetic circuits.
arXiv Detail & Related papers (2020-07-21T15:36:25Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.