Experimental realization of universal quantum gates and six-qubit state
using photonic quantum walk
- URL: http://arxiv.org/abs/2403.06665v1
- Date: Mon, 11 Mar 2024 12:32:22 GMT
- Title: Experimental realization of universal quantum gates and six-qubit state
using photonic quantum walk
- Authors: Kanad Sengupta, K. Muhammed Shafi, S. P. Dinesh, Soumya Asokan, C. M.
Chandrashekar
- Abstract summary: We report the experimental realize of universal set of quantum gates using photonic quantum walk.
We encode multiple qubits using polarization and paths degree of freedom for photon and demonstrate realization of universal set of gates with 100% success probability.
This work marks a significant progress towards using photonic quantum walk for quantum computing.
- Score: 2.331828779757202
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Controlled quantum walk forms the basis for various quantum algorithm and
quantum simulation schemes. Though theoretical proposals are also available to
realize universal quantum computation using quantum walks, no experimental
demonstration of universal set of gates has been reported. Here we report the
experimental realize of universal set of quantum gates using photonic quantum
walk. Taking cue from the discrete-time quantum walk formalism, we encode
multiple qubits using polarization and paths degree of freedom for photon and
demonstrate realization of universal set of gates with 100\% success
probability and high fidelity, as characterised by quantum state tomography.
For a 3-qubit system we encode first qubit with $H$ and $V-$polarization of
photon and path information for the second and third qubit, closely resembling
a Mach-Zehnder interference setup. To generate a 6-qubit system and demonstrate
6-qubit GHZ state, entangled photon pairs are used as source to two 3-qubit
systems. We also provide insights into the mapping of quantum circuits to
quantum walk operations on photons and way to resourcefully scale. This work
marks a significant progress towards using photonic quantum walk for quantum
computing. It also provides a framework for photonic quantum computing using
lesser number of photons in combination with path degree of freedom to increase
the success rate of multi-qubit gate operations.
Related papers
- Quantum Photonic Gates with Two-Dimensional Random Walkers [0.0]
We study quantum photonic gates that utilize continuous time two-dimensional random walking photons.
These gates can be implemented using the inverse design method, where photons randomly walk in a two-dimensional silicon host medium embedded with silicon dioxide scatterers.
arXiv Detail & Related papers (2024-10-02T14:26:05Z) - Coupled vertical double quantum dots at single-hole occupancy [37.69303106863453]
We control vertical double quantum dots confined in a double quantum well, silicon-germanium heterostructure.
We sense individual charge transitions with a single-hole transistor.
tuning the vertical double quantum dot to the (1,1) charge state confines a single hole in each quantum well beneath a single plunger gate.
arXiv Detail & Related papers (2024-01-15T14:46:40Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Quantum Optical Memory for Entanglement Distribution [52.77024349608834]
Entanglement of quantum states over long distances can empower quantum computing, quantum communications, and quantum sensing.
Over the past two decades, quantum optical memories with high fidelity, high efficiencies, long storage times, and promising multiplexing capabilities have been developed.
arXiv Detail & Related papers (2023-04-19T03:18:51Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Integrated Quantum Optical Phase Sensor [48.7576911714538]
We present a photonic integrated circuit fabricated in thin-film lithium niobate.
We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics.
We anticipate that on-chip photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.
arXiv Detail & Related papers (2022-12-19T18:46:33Z) - Distributed quantum computing with photons and atomic memories [0.0]
We propose a universal distributed quantum computing scheme based on photons and atomic-ensemble-based quantum memories.
Taking the established photonic advantages, we mediate two-qubit nonlinear interaction by converting photonic qubits into quantum memory states.
Our results show photon-atom network hybrid approach can be an alternative solution to universal quantum computing.
arXiv Detail & Related papers (2022-07-05T22:52:33Z) - Continuous Variable Quantum Advantages and Applications in Quantum
Optics [0.0]
This thesis focuses on three main questions in the continuous variable and optical settings.
Where does a quantum advantage, that is, the ability of quantum machines to outperform classical machines, come from?
What advantages can be gained in practice from the use of quantum information?
arXiv Detail & Related papers (2021-02-10T02:43:27Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z) - Experimental Demonstration of a Quantum Controlled-SWAP Gate with
Multiple Degrees of Freedom of a Single Photon [4.121840022679671]
We propose and experimentally implement quantum Fredkin gate in a single-photon hybrid-degrees-of-freedom system.
We find that a kind of Greenberger-Horne-Zeilinger-like states can be prepared by using our quantum Fredkin gate.
arXiv Detail & Related papers (2020-11-04T23:39:20Z) - Experimental Demonstration of Efficient High-dimensional Quantum Gates
with Orbital Angular Momentum [4.685726479038803]
We experimentally demonstrate the four-dimensional X gate and its unique higher orders with the average conversion efficiency 93%.
Our work is an important step towards the goal of achieving arbitrary high-dimensional quantum circuit and paves a way for the implementation of high-dimensional quantum communication and computation.
arXiv Detail & Related papers (2020-10-11T15:20:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.