論文の概要: On the Generalization of Handwritten Text Recognition Models
- arxiv url: http://arxiv.org/abs/2411.17332v1
- Date: Tue, 26 Nov 2024 11:20:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:34:12.465106
- Title: On the Generalization of Handwritten Text Recognition Models
- Title(参考訳): 手書き文字認識モデルの一般化について
- Authors: Carlos Garrido-Munoz, Jorge Calvo-Zaragoza,
- Abstract要約: 本研究では,HTRモデルにおける分布外データ(OOD)の一般化に関する制約について検討する。
我々は、広く使用されている7つのデータセットにまたがる8つの最先端HTRモデルから、336のOODケースを分析し、5つの言語にまたがる。
我々は,OODシナリオにおけるHTRモデルの誤差を確実に推定し,70%のケースで10点以下に減少することを示した。
- 参考スコア(独自算出の注目度): 10.251581485267476
- License:
- Abstract: Recent advances in Handwritten Text Recognition (HTR) have led to significant reductions in transcription errors on standard benchmarks under the i.i.d. assumption, thus focusing on minimizing in-distribution (ID) errors. However, this assumption does not hold in real-world applications, which has motivated HTR research to explore Transfer Learning and Domain Adaptation techniques. In this work, we investigate the unaddressed limitations of HTR models in generalizing to out-of-distribution (OOD) data. We adopt the challenging setting of Domain Generalization, where models are expected to generalize to OOD data without any prior access. To this end, we analyze 336 OOD cases from eight state-of-the-art HTR models across seven widely used datasets, spanning five languages. Additionally, we study how HTR models leverage synthetic data to generalize. We reveal that the most significant factor for generalization lies in the textual divergence between domains, followed by visual divergence. We demonstrate that the error of HTR models in OOD scenarios can be reliably estimated, with discrepancies falling below 10 points in 70\% of cases. We identify the underlying limitations of HTR models, laying the foundation for future research to address this challenge.
- Abstract(参考訳): 手書き文字認識(HTR)の最近の進歩は、i.d.の仮定の下での標準ベンチマークでの転写エラーを著しく削減し、分散内誤り(ID)の最小化に重点を置いている。
しかし、この仮定は現実の応用には当てはまらないため、HTRの研究を動機付け、トランスファーラーニングとドメイン適応技術を探究している。
本研究では,HTRモデルの分布外(OOD)データへの一般化における非適応的制約について検討する。
我々は、モデルが事前アクセスなしでOODデータに一般化されることを期待できるドメイン一般化の挑戦的な設定を採用する。
この目的のために,5言語にまたがる7つの広く使用されているデータセットを対象とした8つの最先端HTRモデルから,336のOODケースを分析した。
さらに,HTRモデルが合成データを利用して一般化する方法について検討する。
一般化の最も重要な要因は、ドメイン間のテキストの発散であり、次に視覚的発散である。
我々は,OODシナリオにおけるHTRモデルの誤差を確実に推定できることを示した。
我々は、HTRモデルの基盤となる限界を特定し、この課題に対処するための将来の研究の基礎を築いた。
関連論文リスト
- A Study on Domain Generalization for Failure Detection through Human
Reactions in HRI [7.664159325276515]
マシンラーニングモデルは一般的に、分散(データセット)でテストされる。
これにより、ドメインの一般化 - 異なる設定でパフォーマンスを維持する - が重要な問題となる。
本稿では,人間の表情を訓練した故障検出モデルにおける領域一般化の簡潔な解析を行う。
論文 参考訳(メタデータ) (2024-03-10T21:30:22Z) - A Comprehensive Evaluation and Analysis Study for Chinese Spelling Check [53.152011258252315]
音声とグラフィックの情報を合理的に使用することは,中国語のスペルチェックに有効であることを示す。
モデルはテストセットのエラー分布に敏感であり、モデルの欠点を反映している。
一般的なベンチマークであるSIGHANは、モデルの性能を確実に評価できない。
論文 参考訳(メタデータ) (2023-07-25T17:02:38Z) - GEO-Bench: Toward Foundation Models for Earth Monitoring [139.77907168809085]
6つの分類と6つのセグメンテーションタスクからなるベンチマークを提案する。
このベンチマークは、さまざまな地球観測タスクの進行の原動力となる。
論文 参考訳(メタデータ) (2023-06-06T16:16:05Z) - WiCE: Real-World Entailment for Claims in Wikipedia [63.234352061821625]
We propose WiCE, a new fine-fine textual entailment dataset built on natural claim and evidence pairs from Wikipedia。
標準クレームレベルのエンターメントに加えて、WiCEはクレームのサブ文単位に対するエンターメント判断を提供する。
我々のデータセットの真のクレームは、既存のモデルで対処できない検証と検索の問題に挑戦することを含んでいる。
論文 参考訳(メタデータ) (2023-03-02T17:45:32Z) - Identifying the Context Shift between Test Benchmarks and Production
Data [1.2259552039796024]
データセットベンチマークにおける機械学習モデルの精度と実運用データの間には、パフォーマンスのギャップがある。
分布変化とモデル予測誤差につながる文脈変化を同定する2つの手法を概説する。
本研究は,機械学習モデルに基づく暗黙の仮定を強調するケーススタディを2つ提示する。
論文 参考訳(メタデータ) (2022-07-03T14:54:54Z) - Reassessing Evaluation Practices in Visual Question Answering: A Case
Study on Out-of-Distribution Generalization [27.437077941786768]
大規模マルチモーダルデータ上で事前訓練された視覚・言語モデル(V&L)は,様々なタスクにおいて高い性能を示す。
異なる条件下で事前学習した2つのV&Lモデルを評価する。
これらのモデルは、VQAタスクに必要な高度なスキルを学ぶよりも、ベンチマークを解くことを学ぶ傾向にある。
論文 参考訳(メタデータ) (2022-05-24T16:44:45Z) - On Generalisability of Machine Learning-based Network Intrusion
Detection Systems [0.0]
本稿では,4つのベンチマークNIDSデータセットを用いて,教師付き学習モデルと教師なし学習モデルの評価を行う。
我々の調査は、検討されたモデルのうちどのモデルもすべての研究されたデータセットを一般化できないことを示唆している。
また,本研究では,教師なし学習手法が,検討シナリオにおける教師付き学習モデルよりも一般化されていることも示唆した。
論文 参考訳(メタデータ) (2022-05-09T08:26:48Z) - Enhancing the Generalization for Intent Classification and Out-of-Domain
Detection in SLU [70.44344060176952]
インテント分類は、音声言語理解(SLU)における主要な課題である
近年の研究では、余分なデータやラベルを使用することで、OOD検出性能が向上することが示されている。
本稿では、IND意図分類とOOD検出の両方をサポートしながら、INDデータのみを用いてモデルを訓練することを提案する。
論文 参考訳(メタデータ) (2021-06-28T08:27:38Z) - TACRED Revisited: A Thorough Evaluation of the TACRED Relation
Extraction Task [80.38130122127882]
TACREDはリレーショナル抽出(RE)において最も大きく、最も広く使われているクラウドソースデータセットの1つである
パフォーマンスの天井に到達したのか、改善の余地はあるのか?
ラベルエラーは絶対F1テストエラーの8%を占めており、例の50%以上を可逆化する必要がある。
論文 参考訳(メタデータ) (2020-04-30T15:07:37Z) - The Conditional Entropy Bottleneck [8.797368310561058]
我々は、頑健な一般化の失敗を、ホールトアウトセット上の精度や関連するメトリクスの失敗として特徴づける。
本稿では,モデルの品質を評価するために,最小限必要情報(MNI)基準を提案する。
MNI基準に関して良好に機能するモデルを訓練するために、新しい目的関数である条件エントロピー・ボトルネック(CEB)を提案する。
我々は,CEBモデルと決定論的モデル,および様々なデータセット上での変動情報ボトルネック(VIB)モデルの性能を比較することにより,我々の仮説を実験的に検証した。
論文 参考訳(メタデータ) (2020-02-13T07:46:38Z) - ReClor: A Reading Comprehension Dataset Requiring Logical Reasoning [85.33459673197149]
標準化された大学院受験試験から抽出した論理的推論(ReClor)を必要とする新たな読解データセットを提案する。
本稿では、偏りのあるデータポイントを識別し、それらをEASY集合と残りをHARD集合に分離することを提案する。
実験結果によると、最先端のモデルでは、データセットに含まれるバイアスをEASYセット上で高精度にキャプチャする能力に優れていた。
しかし、彼らはランダムな推測に近い性能のHARDセットに苦慮しており、現在のモデルの論理的推論能力を本質的に向上させるためには、より多くの研究が必要であることを示している。
論文 参考訳(メタデータ) (2020-02-11T11:54:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。