論文の概要: sbi reloaded: a toolkit for simulation-based inference workflows
- arxiv url: http://arxiv.org/abs/2411.17337v1
- Date: Tue, 26 Nov 2024 11:31:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:34:11.905092
- Title: sbi reloaded: a toolkit for simulation-based inference workflows
- Title(参考訳): sbi reloaded:シミュレーションベースの推論ワークフローのためのツールキット
- Authors: Jan Boelts, Michael Deistler, Manuel Gloeckler, Álvaro Tejero-Cantero, Jan-Matthis Lueckmann, Guy Moss, Peter Steinbach, Thomas Moreau, Fabio Muratore, Julia Linhart, Conor Durkan, Julius Vetter, Benjamin Kurt Miller, Maternus Herold, Abolfazl Ziaeemehr, Matthijs Pals, Theo Gruner, Sebastian Bischoff, Nastya Krouglova, Richard Gao, Janne K. Lappalainen, Bálint Mucsányi, Felix Pei, Auguste Schulz, Zinovia Stefanidi, Pedro Rodrigues, Cornelius Schröder, Faried Abu Zaid, Jonas Beck, Jaivardhan Kapoor, David S. Greenberg, Pedro J. Gonçalves, Jakob H. Macke,
- Abstract要約: $texttsbi$は、ニューラルネットワークに基づいたベイズSBIアルゴリズムを実装するPyTorchベースのパッケージである。
texttsbi$ツールキットを使えば、科学者やエンジニアが最先端のSBIメソッドをブラックボックスシミュレータに適用できる。
- 参考スコア(独自算出の注目度): 15.696312591547283
- License:
- Abstract: Scientists and engineers use simulators to model empirically observed phenomena. However, tuning the parameters of a simulator to ensure its outputs match observed data presents a significant challenge. Simulation-based inference (SBI) addresses this by enabling Bayesian inference for simulators, identifying parameters that match observed data and align with prior knowledge. Unlike traditional Bayesian inference, SBI only needs access to simulations from the model and does not require evaluations of the likelihood-function. In addition, SBI algorithms do not require gradients through the simulator, allow for massive parallelization of simulations, and can perform inference for different observations without further simulations or training, thereby amortizing inference. Over the past years, we have developed, maintained, and extended $\texttt{sbi}$, a PyTorch-based package that implements Bayesian SBI algorithms based on neural networks. The $\texttt{sbi}$ toolkit implements a wide range of inference methods, neural network architectures, sampling methods, and diagnostic tools. In addition, it provides well-tested default settings but also offers flexibility to fully customize every step of the simulation-based inference workflow. Taken together, the $\texttt{sbi}$ toolkit enables scientists and engineers to apply state-of-the-art SBI methods to black-box simulators, opening up new possibilities for aligning simulations with empirically observed data.
- Abstract(参考訳): 科学者や技術者はシミュレーターを使って経験的に観察された現象をモデル化する。
しかしながら、シミュレーションのパラメータをチューニングして、その出力が観測データと一致することを保証することは、大きな課題となる。
シミュレーションベースの推論(SBI)は、シミュレーターに対するベイズ推論を可能にし、観測されたデータと一致し、事前の知識と整合するパラメータを特定することでこの問題に対処する。
従来のベイズ推定とは異なり、SBIはモデルからのみシミュレーションにアクセスでき、可能性関数の評価を必要としない。
さらに、SBIアルゴリズムはシミュレータによる勾配を必要とせず、シミュレーションの大規模な並列化を可能にし、さらなるシミュレーションやトレーニングをすることなく異なる観測のための推論を実行し、推論を償却することができる。
この数年間で、ニューラルネットワークに基づくベイズSBIアルゴリズムを実装したPyTorchベースのパッケージである$\texttt{sbi}$を開発し、維持し、拡張してきた。
$\texttt{sbi}$ツールキットは、幅広い推論方法、ニューラルネットワークアーキテクチャ、サンプリング方法、診断ツールを実装している。
さらに、十分にテストされたデフォルト設定を提供すると同時に、シミュレーションベースの推論ワークフローのすべてのステップを完全にカスタマイズする柔軟性も提供する。
まとめると、$\texttt{sbi}$ツールキットは、科学者やエンジニアが最先端のSBIメソッドをブラックボックスシミュレータに適用することを可能にする。
関連論文リスト
- Compositional simulation-based inference for time series [21.9975782468709]
シミュレータは、時間とともに何千もの単一状態遷移を通して現実世界のダイナミクスをエミュレートする。
本研究では,個々の状態遷移に整合したパラメータを局所的に同定することで,マルコフシミュレータを活用可能なSBIフレームワークを提案する。
次に、これらの局所的な結果を合成して、時系列の観測全体と一致した後続のオーバーパラメータを求める。
論文 参考訳(メタデータ) (2024-11-05T01:55:07Z) - Embed and Emulate: Contrastive representations for simulation-based inference [11.543221890134399]
本稿では,新しいシミュレーションベース推論(SBI)手法であるEmbed and Emulate(E&E)を紹介する。
E&Eはデータと対応する高速エミュレータの低次元潜伏埋め込みを潜伏空間に学習する。
本研究では,現実的なパラメータ推定タスクにおいて,既存の手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-09-27T02:37:01Z) - All-in-one simulation-based inference [19.41881319338419]
我々は、現在の制限を克服する新しい償却推論手法、Simformerを提案する。
Simformerは、ベンチマークタスクにおける現在の最先端の償却推論アプローチより優れています。
関数値パラメータを持つモデルに適用することができ、欠落または非構造化データによる推論シナリオを処理でき、パラメータとデータの合同分布の任意の条件をサンプリングすることができる。
論文 参考訳(メタデータ) (2024-04-15T10:12:33Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymaxは、マルチエージェントシーンにおける自動運転のための新しいデータ駆動シミュレータである。
TPU/GPUなどのハードウェアアクセラレータで完全に動作し、トレーニング用のグラフ内シミュレーションをサポートする。
我々は、一般的な模倣と強化学習アルゴリズムのスイートをベンチマークし、異なる設計決定に関するアブレーション研究を行った。
論文 参考訳(メタデータ) (2023-10-12T20:49:15Z) - Generalized Bayesian Inference for Scientific Simulators via Amortized
Cost Estimation [11.375835331641548]
ニューラルネットワークをトレーニングしてコスト関数を近似し、パラメータと観測データとの予測距離と定義する。
いくつかのベンチマークタスクにおいて、ACEはコストを正確に予測し、他のSBI法よりも合成観測に近い予測シミュレーションを提供する。
論文 参考訳(メタデータ) (2023-05-24T14:45:03Z) - Neural Posterior Estimation with Differentiable Simulators [58.720142291102135]
微分可能シミュレータを用いてニューラル・ポストミラー推定(NPE)を行う新しい手法を提案する。
勾配情報が後部形状の制約にどのように役立ち、試料効率を向上させるかを示す。
論文 参考訳(メタデータ) (2022-07-12T16:08:04Z) - Synthetic Data-Based Simulators for Recommender Systems: A Survey [55.60116686945561]
本調査は,モデリングとシミュレーションの分野における最近のトレンドを包括的に概観することを目的としている。
まずは、シミュレーターを実装するフレームワークの開発の背後にあるモチベーションから始めます。
我々は,既存のシミュレータの機能,近似,産業的有効性に基づいて,新しい一貫した一貫した分類を行う。
論文 参考訳(メタデータ) (2022-06-22T19:33:21Z) - Likelihood-Free Inference in State-Space Models with Unknown Dynamics [71.94716503075645]
本研究では、状態空間モデルにおいて、観測をシミュレートすることしかできず、遷移ダイナミクスが不明な潜在状態の推測と予測を行う手法を提案する。
本研究では,限られた数のシミュレーションで状態予測と状態予測を行う手法を提案する。
論文 参考訳(メタデータ) (2021-11-02T12:33:42Z) - A User's Guide to Calibrating Robotics Simulators [54.85241102329546]
本稿では,シミュレーションで学習したモデルやポリシーを現実世界に伝達することを目的とした,様々なアルゴリズムの研究のためのベンチマークとフレームワークを提案する。
我々は、様々なアルゴリズムの性能に関する洞察を特徴付け、提供するために、広く知られたシミュレーション環境の実験を行う。
我々の分析は、この分野の実践者にとって有用であり、sim-to-realアルゴリズムの動作と主特性について、より深い選択をすることができる。
論文 参考訳(メタデータ) (2020-11-17T22:24:26Z) - SBI -- A toolkit for simulation-based inference [0.0]
シミュレーションベースの推論 (SBI) は、a) が先行知識と互換性があり、b) が経験的観察と一致するパラメータ集合を識別しようとする。
ニューラルネットワークに基づくSBIアルゴリズムを実装したPyTorchベースのパッケージであるtextttsbi$を提示する。
論文 参考訳(メタデータ) (2020-07-17T16:53:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。