Singly poled thin film lithium niobate waveguide as a tunable source of photon pairs across telecom band
- URL: http://arxiv.org/abs/2411.17369v1
- Date: Tue, 26 Nov 2024 12:25:10 GMT
- Title: Singly poled thin film lithium niobate waveguide as a tunable source of photon pairs across telecom band
- Authors: Muskan Arora, Jyoti Arya, Pranav Chokkara, Jasleen Lugani,
- Abstract summary: We report on a strongly dispersive, singly poled thin film lithium niobate (TFLN) waveguide geometry which acts as a convertible source of photon pairs across telecom band with tunable spectral properties.
We believe that such a versatile source of photon pairs will serve as an important ingredient in various quantum optical tasks which require photons at different telecom bands and desired spectral properties.
- Score: 0.0
- License:
- Abstract: Spontaneous parametric down conversion (SPDC), especially in non-linear waveguides, serves as an important process to generate quantum states of light with desired properties. In this work, we report on a design of a strongly dispersive, singly poled thin film lithium niobate (TFLN) waveguide geometry which acts as a convertible source of photon pairs across telecom band with tunable spectral properties. Through our simulations, we demonstrate that by using this optimized waveguide geometry, two completely different yet desirable type II phase-matched SPDC processes are enabled using a single poling period. One process generates spectrally correlated non-degenerate photon pairs with one photon at 1310 nm (telecom O band) and the other at 1550 nm (telecom C band). The second SPDC process results in spectrally uncorrelated photon pairs in telecom C band at 1533 nm and 1567 nm respectively.We attribute this versatility of TFLN waveguide to its strong dispersion properties and make a comparative study with the existing weakly dispersive waveguide platforms. We believe that such a versatile source of photon pairs will serve as an important ingredient in various quantum optical tasks which require photons at different telecom bands and desired spectral properties.
Related papers
- High-efficiency On-chip Quantum Photon Source in Modal Phase-matched Lithium Niobate Nanowaveguide [4.5382577231478605]
Thin-film lithium niobate on insulator(LNOI) emerges as a promising platform for integrated quantum photon source.
We report an alternative strategy to offset the phase mismatching of spontaneous parametric down-conversion process.
This dual-layer waveguide generates photon pairs with pair generation rate of 41.77GHz/mW.
arXiv Detail & Related papers (2024-12-16T01:58:52Z) - Polarization-entangled photon pairs generation from a single lithium niobate waveguide with single poling period [7.30580496740769]
We propose a simple and efficient scheme to generate polarization-entangled photon pairs based on type-0 SPDC.
By utilizing the strong dispersion engineering capabilities of thin-film waveguides, we can achieve both degenerate and highly detuned entangled photon pairs.
arXiv Detail & Related papers (2024-10-30T08:08:51Z) - Efficient photon-pair generation in layer-poled lithium niobate nanophotonic waveguides [10.571773636879247]
Thin-film lithium niobate is a promising platform for on-chip photon-pair generation.
We introduce a layer-poled lithium niobate (LPLN) nanophotonic waveguide for efficient photon-pair generation.
We demonstrate photon-pair generation with a normalized brightness of 3.1*106 Hz nm-1 mW-2 in a 3.3 mm long LPLN waveguide.
arXiv Detail & Related papers (2024-05-17T17:57:26Z) - Avoiding lateral mode leakage in thin film lithium niobate waveguides
for the generation of spectrally pure photons at telecom wavelengths [0.0]
Photonic integrated optical components, notably straight waveguides, serve as pivotal elements for on-chip generation and manipulation of quantum states of light.
We focus on optimizing waveguides based on lithium niobate on insulator (LNOI) to generate photon pairs at telecom wavelength using spontaneous parametric down-conversion (SPDC)
Specifically, we investigate lateral leakage for all possible SPDC processes involving type 0, type I and type II phase matching conditions in an X-cut lithium niobate waveguide.
arXiv Detail & Related papers (2024-02-08T14:12:55Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Flexible source of correlated photons based on LNOI rib waveguides [0.0]
Lithium niobate on insulator (LNOI) has a great potential for photonic integrated circuits.
This paper theoretically demonstrates a flexible source of correlated photons built on the LNOI waveguide of a special geometry.
arXiv Detail & Related papers (2021-10-20T13:42:46Z) - Complete conversion between one and two photons in nonlinear waveguides
with tailored dispersion [62.997667081978825]
We show theoretically how to control coherent conversion between a narrow-band pump photon and broadband photon pairs in nonlinear optical waveguides.
We reveal that complete deterministic conversion as well as pump-photon revival can be achieved at a finite propagation distance.
arXiv Detail & Related papers (2021-10-06T23:49:44Z) - Auto-heterodyne characterization of narrow-band photon pairs [68.8204255655161]
We describe a technique to measure photon pair joint spectra by detecting the time-correlation beat note when non-degenerate photon pairs interfere at a beamsplitter.
The technique is well suited to characterize pairs of photons, each of which can interact with a single atomic species.
arXiv Detail & Related papers (2021-01-08T18:21:30Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z) - Quantum interface between light and a one-dimensional atomic system [58.720142291102135]
We investigate optimal conditions for the quantum interface between a signal photon pulse and one-dimensional chain consisting of a varied number of atoms.
The efficiency of interaction is mainly limited by achieved overlap and coupling of the waveguide evanescent field with the trapped atoms.
arXiv Detail & Related papers (2020-04-11T11:43:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.