論文の概要: Maximally Separated Active Learning
- arxiv url: http://arxiv.org/abs/2411.17444v1
- Date: Tue, 26 Nov 2024 14:02:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:34:09.782256
- Title: Maximally Separated Active Learning
- Title(参考訳): 最大分離型アクティブラーニング
- Authors: Tejaswi Kasarla, Abhishek Jha, Faye Tervoort, Rita Cucchiara, Pascal Mettes,
- Abstract要約: 固定等角超球面点をクラスプロトタイプとして利用する能動的学習法を提案する。
5つのベンチマークデータセットにまたがる既存のアクティブラーニング技術よりも高いパフォーマンスを示す。
- 参考スコア(独自算出の注目度): 32.98415531556376
- License:
- Abstract: Active Learning aims to optimize performance while minimizing annotation costs by selecting the most informative samples from an unlabelled pool. Traditional uncertainty sampling often leads to sampling bias by choosing similar uncertain samples. We propose an active learning method that utilizes fixed equiangular hyperspherical points as class prototypes, ensuring consistent inter-class separation and robust feature representations. Our approach introduces Maximally Separated Active Learning (MSAL) for uncertainty sampling and a combined strategy (MSAL-D) for incorporating diversity. This method eliminates the need for costly clustering steps, while maintaining diversity through hyperspherical uniformity. We demonstrate strong performance over existing active learning techniques across five benchmark datasets, highlighting the method's effectiveness and integration ease. The code is available on GitHub.
- Abstract(参考訳): Active Learningは、未実装のプールから最も情報に富んだサンプルを選択することで、アノテーションコストを最小限にしつつ、パフォーマンスを最適化することを目的としている。
従来の不確実性サンプリングは、しばしば同様の不確実性サンプルを選択することでサンプリングバイアスを引き起こす。
固定等角超球面点をクラスプロトタイプとして利用し,一貫したクラス間分離とロバストな特徴表現を確保する能動的学習法を提案する。
本手法では,不確実性サンプリングのための最大分離アクティブラーニング(MSAL)と,多様性を取り入れた統合戦略(MSAL-D)を導入する。
この方法は、超球面均一性を通じて多様性を維持しながら、コストのかかるクラスタリングステップを不要にする。
5つのベンチマークデータセットにまたがる既存のアクティブな学習技術よりも高いパフォーマンスを示し、その方法の有効性と統合の容易さを強調した。
コードはGitHubで入手できる。
関連論文リスト
- Words Matter: Leveraging Individual Text Embeddings for Code Generation in CLIP Test-Time Adaptation [21.20806568508201]
テスト時推論において視覚言語モデル(VLM)が遭遇する分布ドリフトを軽減するために,クラステキスト情報を活用する方法を示す。
本稿では,ラベル割り当て問題の固定セントロイドとしてジェネリッククラステキスト埋め込みを利用して,テスト時間サンプルの擬似ラベルを生成することを提案する。
多様な複雑性を示す複数の人気のあるテスト時間適応ベンチマークの実験は、CLIP-OTの優位性を実証的に示している。
論文 参考訳(メタデータ) (2024-11-26T00:15:37Z) - Dual-Decoupling Learning and Metric-Adaptive Thresholding for Semi-Supervised Multi-Label Learning [81.83013974171364]
半教師付きマルチラベル学習(SSMLL)は、正確なマルチラベルアノテーションを収集するコストを削減するために、ラベルのないデータを活用する強力なフレームワークである。
半教師付き学習とは異なり、インスタンスに含まれる複数のセマンティクスのため、SSMLLの擬似ラベルとして最も確率の高いラベルを選択することはできない。
本稿では,高品質な擬似ラベルを生成するための二重パースペクティブ手法を提案する。
論文 参考訳(メタデータ) (2024-07-26T09:33:53Z) - Annotation-Efficient Polyp Segmentation via Active Learning [45.59503015577479]
アノテーション効率の良いポリプセグメンテーションのための深層能動的学習フレームワークを提案する。
実際に,ポリプの予測マップと背景領域の類似性を調べることで,各試料の不確実性を測定する。
提案手法は,パブリックデータセットと大規模社内データセットの双方において,競合相手と比較して,最先端性能を実現していることを示す。
論文 参考訳(メタデータ) (2024-03-21T12:25:17Z) - Semi-Supervised Class-Agnostic Motion Prediction with Pseudo Label
Regeneration and BEVMix [59.55173022987071]
クラス非依存動作予測のための半教師あり学習の可能性について検討する。
我々のフレームワークは一貫性に基づく自己学習パラダイムを採用しており、ラベルのないデータからモデルを学習することができる。
本手法は,弱さと完全教師付き手法に匹敵する性能を示す。
論文 参考訳(メタデータ) (2023-12-13T09:32:50Z) - Self-aware and Cross-sample Prototypical Learning for Semi-supervised
Medical Image Segmentation [10.18427897663732]
整合性学習は半教師付き医療画像セグメンテーションにおいて重要な役割を担っている。
これにより、注釈なしデータの豊富さを生かしながら、限られた注釈付きデータの有効利用が可能になる。
一貫性学習における予測の多様性を高めるために,自己認識型・クロスサンプル型学習法(SCP-Net)を提案する。
論文 参考訳(メタデータ) (2023-05-25T16:22:04Z) - Active Learning Principles for In-Context Learning with Large Language
Models [65.09970281795769]
本稿では,アクティブ・ラーニング・アルゴリズムが,文脈内学習における効果的な実演選択手法としてどのように機能するかを検討する。
ALによる文脈内サンプル選択は,不確実性の低い高品質な事例を優先し,試験例と類似性を有することを示す。
論文 参考訳(メタデータ) (2023-05-23T17:16:04Z) - Rethinking Clustering-Based Pseudo-Labeling for Unsupervised
Meta-Learning [146.11600461034746]
教師なしメタラーニングのメソッドであるCACTUsは、擬似ラベル付きクラスタリングベースのアプローチである。
このアプローチはモデルに依存しないため、教師付きアルゴリズムと組み合わせてラベルのないデータから学習することができる。
このことの核となる理由は、埋め込み空間においてクラスタリングに優しい性質が欠如していることである。
論文 参考訳(メタデータ) (2022-09-27T19:04:36Z) - Exploiting Diversity of Unlabeled Data for Label-Efficient
Semi-Supervised Active Learning [57.436224561482966]
アクティブラーニング(英: Active Learning)は、ラベリングのための最も重要なサンプルを選択することで、高価なラベリングの問題に対処する研究分野である。
アクティブな学習環境における初期ラベル付けのための最も情報性の高いサンプル群を選択するために,多様性に基づく新しい初期データセット選択アルゴリズムを提案する。
また、一貫性に基づく埋め込みの多様性に基づくサンプリングを用いた、新しいアクティブな学習クエリ戦略を提案する。
論文 参考訳(メタデータ) (2022-07-25T16:11:55Z) - A Lagrangian Duality Approach to Active Learning [119.36233726867992]
トレーニングデータのサブセットのみをラベル付けするバッチアクティブな学習問題を考察する。
制約付き最適化を用いて学習問題を定式化し、各制約はラベル付きサンプルにモデルの性能を拘束する。
数値実験により,提案手法は最先端の能動学習法と同等かそれ以上に機能することを示した。
論文 参考訳(メタデータ) (2022-02-08T19:18:49Z) - Mitigating Sampling Bias and Improving Robustness in Active Learning [13.994967246046008]
教師付き環境下での能動学習に比較学習の損失を生かして教師付き能動学習を導入する。
多様な特徴表現の情報的データサンプルを選択するアンバイアスなクエリ戦略を提案する。
提案手法は,アクティブな学習環境において,サンプリングバイアスを低減し,最先端の精度を実現し,モデルの校正を行う。
論文 参考訳(メタデータ) (2021-09-13T20:58:40Z) - Progressive Multi-Stage Learning for Discriminative Tracking [25.94944743206374]
本稿では,頑健な視覚追跡のためのサンプル選択の段階的多段階最適化ポリシを用いた共同識別学習手法を提案する。
提案手法は, 時間重み付き, 検出誘導型セルフペースト学習戦略により, 簡単なサンプル選択を行う。
ベンチマークデータセットの実験では、提案した学習フレームワークの有効性が示されている。
論文 参考訳(メタデータ) (2020-04-01T07:01:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。