論文の概要: Support Vector Machine for Person Classification Using the EEG Signals
- arxiv url: http://arxiv.org/abs/2411.17446v1
- Date: Tue, 26 Nov 2024 14:03:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:33:41.279317
- Title: Support Vector Machine for Person Classification Using the EEG Signals
- Title(参考訳): 脳波信号を用いた人物分類支援ベクトルマシン
- Authors: Naveenkumar G Venkataswamy, Masudul H Imtiaz,
- Abstract要約: 本稿では,この課題に対処するために,脳波信号を用いた個人識別を提案する。
脳波信号は、有望な認証可能性を提供し、活力検出のための新しい手段を提供し、それによって偽造攻撃を緩和する。
本研究では8チャンネルのOpenBCIヘルメットを用いて記録された12人の被験者の脳波データを特徴付ける疲労解析のために最初にコンパイルされたパブリックデータセットを用いる。
- 参考スコア(独自算出の注目度): 0.4419843514606336
- License:
- Abstract: User authentication is a pivotal element in security systems. Conventional methods including passwords, personal identification numbers, and identification tags are increasingly vulnerable to cyber-attacks. This paper suggests a paradigm shift towards biometric identification technology that leverages unique physiological or behavioral characteristics for user authenticity verification. Nevertheless, biometric solutions like fingerprints, iris patterns, facial and voice recognition are also susceptible to forgery and deception. We propose using Electroencephalogram (EEG) signals for individual identification to address this challenge. Derived from unique brain activities, these signals offer promising authentication potential and provide a novel means for liveness detection, thereby mitigating spoofing attacks. This study employs a public dataset initially compiled for fatigue analysis, featuring EEG data from 12 subjects recorded via an eight-channel OpenBCI helmet. This dataset extracts salient features from the EEG signals and trains a supervised multiclass Support Vector Machine classifier. Upon evaluation, the classifier model achieves a maximum accuracy of 92.9\%, leveraging ten features from each channel. Collectively, these findings highlight the viability of machine learning in implementing real-world, EEG-based biometric identification systems, thereby advancing user authentication technology.
- Abstract(参考訳): ユーザ認証はセキュリティシステムにおいて重要な要素である。
パスワード、個人識別番号、識別タグを含む従来の手法は、サイバー攻撃に対してますます脆弱になっている。
本稿では,ユーザ認証にユニークな生理的・行動的特性を活用する生体認証技術へのパラダイムシフトを提案する。
それでも、指紋、虹彩パターン、顔認識、音声認識といった生体認証ソリューションは、偽造や偽造にも影響を受けやすい。
本稿では,この課題に対処するために,脳波信号を用いた個人識別を提案する。
ユニークな脳活動から派生したこれらのシグナルは、有望な認証能力を提供し、活力検出のための新しい手段を提供し、それによって偽造攻撃を緩和する。
本研究では8チャンネルのOpenBCIヘルメットを用いて記録された12人の被験者の脳波データを特徴付ける疲労解析のために最初にコンパイルされたパブリックデータセットを用いる。
このデータセットは、EEG信号から健全な特徴を抽出し、教師付きマルチクラスサポートベクトルマシン分類器を訓練する。
評価すると、分類器モデルは92.9\%の最大精度を達成し、各チャンネルの10つの特徴を利用する。
これらの知見は、現実世界のEEGベースの生体認証システムの実装における機械学習の実用性を強調し、ユーザ認証技術の進歩を図っている。
関連論文リスト
- EEG decoding with conditional identification information [7.873458431535408]
脳波信号を復号することは、人間の脳を解き放ち、脳とコンピュータのインターフェースを進化させるのに不可欠である。
従来の機械学習アルゴリズムは、高ノイズレベルと脳波信号の個人間変動によって妨げられている。
ディープニューラルネットワーク(DNN)の最近の進歩は、その高度な非線形モデリング能力のために、将来性を示している。
論文 参考訳(メタデータ) (2024-03-21T13:38:59Z) - When Does Your Brain Know You? Segment Length and Its Impact on EEG-based Biometric Authentication Accuracy [3.9735602856280132]
この研究は、EEGデータが認証目的の最大情報収率を提供するしきい値を特定することを目指している。
この知見は非侵襲的生体計測技術の分野を推し進めるものである。
論文 参考訳(メタデータ) (2024-03-19T11:30:03Z) - Biometrics Employing Neural Network [0.0]
指紋、虹彩、網膜パターン、顔認識、手形、手のひら印刷、音声認識はバイオメトリックスの形式としてよく用いられる。
システムが効果的で広く受け入れられるためには、認識と検証におけるエラー率はゼロに近づかなければならない。
人間の脳の動作をシミュレートする人工ニューラルネットワークは、自身を有望なアプローチとして提示する。
論文 参考訳(メタデータ) (2024-02-01T03:59:04Z) - Multi-Channel Time-Series Person and Soft-Biometric Identification [65.83256210066787]
本研究は, 深層建築を用いて異なる活動を行う人間の記録から, 個人とソフトバイオメトリックスを同定する。
マルチチャネル時系列ヒューマンアクティビティ認識(HAR)の4つのデータセットに対する手法の評価を行った。
ソフトバイオメトリクスに基づく属性表現は、有望な結果を示し、より大きなデータセットの必要性を強調している。
論文 参考訳(メタデータ) (2023-04-04T07:24:51Z) - Data-driven behavioural biometrics for continuous and adaptive user
verification using Smartphone and Smartwatch [0.0]
行動バイオメトリックスと多要素認証(MFA)をブレンドするアルゴリズムを提案する。
本研究では,モーションベースバイオメトリックスを用いてユーザの身元を検証するための2段階のユーザ検証アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-10-07T02:46:21Z) - Spotting adversarial samples for speaker verification by neural vocoders [102.1486475058963]
我々は、自動話者検証(ASV)のための敵対サンプルを見つけるために、ニューラルボコーダを採用する。
元の音声と再合成音声のASVスコアの違いは、真正と逆正のサンプルの識別に良い指標であることがわかった。
私たちのコードは、将来的な比較作業のためにオープンソースにされます。
論文 参考訳(メタデータ) (2021-07-01T08:58:16Z) - Biometrics: Trust, but Verify [49.9641823975828]
バイオメトリック認識は、世界中のさまざまなアプリケーションに爆発しました。
生体認証システムの様々なサブモジュールに関する多くの顕著な問題と懸念があります。
論文 参考訳(メタデータ) (2021-05-14T03:07:25Z) - Discriminative Singular Spectrum Classifier with Applications on
Bioacoustic Signal Recognition [67.4171845020675]
分析や分類に有用な特徴を効率的に抽出する識別機構を備えた生体音響信号分類器を提案する。
タスク指向の現在のバイオ音響認識法とは異なり、提案モデルは入力信号をベクトル部分空間に変換することに依存する。
提案法の有効性は,アヌラン,ミツバチ,蚊の3種の生物音響データを用いて検証した。
論文 参考訳(メタデータ) (2021-03-18T11:01:21Z) - EEG-Based Brain-Computer Interfaces Are Vulnerable to Backdoor Attacks [68.01125081367428]
近年の研究では、機械学習アルゴリズムは敵攻撃に弱いことが示されている。
本稿では,脳波をベースとしたBCIの毒殺攻撃に狭周期パルスを用いることを提案する。
論文 参考訳(メタデータ) (2020-10-30T20:49:42Z) - Disguising Personal Identity Information in EEG Signals [6.9207437122916735]
本稿では,脳波信号の身元情報をダミーIDで偽装する手法を提案する。
元の脳波のアイデンティティ情報は、CycleGANベースの脳波測位モデルで偽の脳波に変換される。
モデルに制約を加えることで、脳波信号に対する関心の特徴を保存できる。
論文 参考訳(メタデータ) (2020-10-18T03:55:38Z) - A Novel Transferability Attention Neural Network Model for EEG Emotion
Recognition [51.203579838210885]
脳波感情認識のための伝達型注目ニューラルネットワーク(TANN)を提案する。
TANNは、伝達可能な脳波領域のデータとサンプルを適応的に強調することにより、感情的な識別情報を学習する。
これは、複数の脳領域レベル判別器と1つのサンプルレベル判別器の出力を測定することで実現できる。
論文 参考訳(メタデータ) (2020-09-21T02:42:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。