論文の概要: Training Hamiltonian neural networks without backpropagation
- arxiv url: http://arxiv.org/abs/2411.17511v1
- Date: Tue, 26 Nov 2024 15:22:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:33:47.198265
- Title: Training Hamiltonian neural networks without backpropagation
- Title(参考訳): バックプロパゲーションのないハミルトニアンニューラルネットワークの訓練
- Authors: Atamert Rahma, Chinmay Datar, Felix Dietrich,
- Abstract要約: 本稿では,ハミルトニアン系を近似するニューラルネットワークのトレーニングを高速化するバックプロパゲーションフリーアルゴリズムを提案する。
従来のハミルトニアンニューラルネットワークよりもCPUの方が100倍以上高速であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Neural networks that synergistically integrate data and physical laws offer great promise in modeling dynamical systems. However, iterative gradient-based optimization of network parameters is often computationally expensive and suffers from slow convergence. In this work, we present a backpropagation-free algorithm to accelerate the training of neural networks for approximating Hamiltonian systems through data-agnostic and data-driven algorithms. We empirically show that data-driven sampling of the network parameters outperforms data-agnostic sampling or the traditional gradient-based iterative optimization of the network parameters when approximating functions with steep gradients or wide input domains. We demonstrate that our approach is more than 100 times faster with CPUs than the traditionally trained Hamiltonian Neural Networks using gradient-based iterative optimization and is more than four orders of magnitude accurate in chaotic examples, including the H\'enon-Heiles system.
- Abstract(参考訳): データと物理法則を相乗的に統合するニューラルネットワークは、動的システムのモデリングにおいて大きな可能性を秘めている。
しかし、ネットワークパラメータの反復勾配に基づく最適化は、しばしば計算コストが高く、収束が遅い。
本研究では,データに依存しないアルゴリズムとデータ駆動型アルゴリズムを用いて,ハミルトニアン系を近似するニューラルネットワークのトレーニングを高速化するバックプロパゲーションフリーアルゴリズムを提案する。
ネットワークパラメータのデータ駆動サンプリングは、急勾配や広い入力領域の近似関数において、データに依存しないサンプリングや従来の勾配に基づくネットワークパラメータの反復最適化よりも優れていることを実証的に示す。
我々は、勾配に基づく反復最適化を用いて、従来訓練されていたハミルトニアンニューラルネットワークよりも100倍以上高速で、H'enon-Heilesシステムを含むカオス的な例では4桁以上精度が高いことを実証した。
関連論文リスト
- From Fourier to Neural ODEs: Flow Matching for Modeling Complex Systems [20.006163951844357]
ニューラル常微分方程式(NODE)を学習するためのシミュレーション不要なフレームワークを提案する。
フーリエ解析を用いて、ノイズの多い観測データから時間的および潜在的高次空間勾配を推定する。
我々の手法は、トレーニング時間、ダイナミクス予測、堅牢性の観点から、最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2024-05-19T13:15:23Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Simple initialization and parametrization of sinusoidal networks via
their kernel bandwidth [92.25666446274188]
従来の活性化機能を持つネットワークの代替として、活性化を伴う正弦波ニューラルネットワークが提案されている。
まず,このような正弦波ニューラルネットワークの簡易版を提案する。
次に、ニューラルタンジェントカーネルの観点からこれらのネットワークの挙動を分析し、そのカーネルが調整可能な帯域幅を持つ低域フィルタを近似することを実証する。
論文 参考訳(メタデータ) (2022-11-26T07:41:48Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
ニューラルネットワークのチェックポイントのデータセットを構築し,パラメータの生成モデルをトレーニングする。
提案手法は,幅広い損失プロンプトに対するパラメータの生成に成功している。
我々は、教師付きおよび強化学習における異なるニューラルネットワークアーキテクチャとタスクに本手法を適用した。
論文 参考訳(メタデータ) (2022-09-26T17:59:58Z) - Acceleration techniques for optimization over trained neural network
ensembles [1.0323063834827415]
本研究では, 線形単位活性化の補正されたフィードフォワードニューラルネットワークを用いて, 目的関数をモデル化する最適化問題について検討する。
本稿では,1つのニューラルネットワークを最適化するために,既存のBig-M$の定式化をベースとした混合整数線形プログラムを提案する。
論文 参考訳(メタデータ) (2021-12-13T20:50:54Z) - Non-Gradient Manifold Neural Network [79.44066256794187]
ディープニューラルネットワーク(DNN)は通常、勾配降下による最適化に数千のイテレーションを要します。
非次最適化に基づく新しい多様体ニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-06-15T06:39:13Z) - Convergence rates for gradient descent in the training of
overparameterized artificial neural networks with biases [3.198144010381572]
近年、人工ニューラルネットワークは、古典的なソリューションが近づいている多数の問題に対処するための強力なツールに発展しています。
ランダムな勾配降下アルゴリズムが限界に達する理由はまだ不明である。
論文 参考訳(メタデータ) (2021-02-23T18:17:47Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z) - Hyperparameter Optimization in Binary Communication Networks for
Neuromorphic Deployment [4.280642750854163]
ニューロモルフィック展開のためのニューラルネットワークのトレーニングは簡単ではない。
本稿では,ニューロモルフィックハードウェアに展開可能なバイナリ通信ネットワークをトレーニングするためのアルゴリズムのハイパーパラメータを最適化するためのベイズ的手法を提案する。
このアルゴリズムでは,データセット毎のハイパーパラメータを最適化することにより,データセット毎の前の最先端よりも精度が向上できることが示されている。
論文 参考訳(メタデータ) (2020-04-21T01:15:45Z) - Understanding the Effects of Data Parallelism and Sparsity on Neural
Network Training [126.49572353148262]
ニューラルネットワークトレーニングにおける2つの要因として,データ並列性と疎性について検討する。
有望なメリットにもかかわらず、ニューラルネットワークトレーニングに対する彼らの影響を理解することは、依然として明白である。
論文 参考訳(メタデータ) (2020-03-25T10:49:22Z) - On transfer learning of neural networks using bi-fidelity data for
uncertainty propagation [0.0]
本研究では,高忠実度モデルと低忠実度モデルの両方から生成された学習データを用いた伝達学習手法の適用について検討する。
前者のアプローチでは、低忠実度データに基づいて、入力を関心の出力にマッピングするニューラルネットワークモデルを訓練する。
次に、高忠実度データを使用して、低忠実度ネットワークの上層(s)のパラメータを適応させたり、より単純なニューラルネットワークをトレーニングして、低忠実度ネットワークの出力を高忠実度モデルのパラメータにマッピングする。
論文 参考訳(メタデータ) (2020-02-11T15:56:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。