LaMMA-P: Generalizable Multi-Agent Long-Horizon Task Allocation and Planning with LM-Driven PDDL Planner
- URL: http://arxiv.org/abs/2409.20560v1
- Date: Mon, 30 Sep 2024 17:58:18 GMT
- Title: LaMMA-P: Generalizable Multi-Agent Long-Horizon Task Allocation and Planning with LM-Driven PDDL Planner
- Authors: Xiaopan Zhang, Hao Qin, Fuquan Wang, Yue Dong, Jiachen Li,
- Abstract summary: Language models (LMs) possess a strong capability to comprehend natural language, making them effective in translating human instructions into detailed plans for simple robot tasks.
We propose a Language Model-Driven Multi-Agent PDDL Planner (LaMMA-P), a novel multi-agent task planning framework.
LaMMA-P integrates the strengths of the LMs' reasoning capability and the traditional search planner to achieve a high success rate and efficiency.
- Score: 9.044939946653002
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Language models (LMs) possess a strong capability to comprehend natural language, making them effective in translating human instructions into detailed plans for simple robot tasks. Nevertheless, it remains a significant challenge to handle long-horizon tasks, especially in subtask identification and allocation for cooperative heterogeneous robot teams. To address this issue, we propose a Language Model-Driven Multi-Agent PDDL Planner (LaMMA-P), a novel multi-agent task planning framework that achieves state-of-the-art performance on long-horizon tasks. LaMMA-P integrates the strengths of the LMs' reasoning capability and the traditional heuristic search planner to achieve a high success rate and efficiency while demonstrating strong generalization across tasks. Additionally, we create MAT-THOR, a comprehensive benchmark that features household tasks with two different levels of complexity based on the AI2-THOR environment. The experimental results demonstrate that LaMMA-P achieves a 105% higher success rate and 36% higher efficiency than existing LM-based multi-agent planners. The experimental videos, code, and datasets of this work as well as the detailed prompts used in each module are available at https://lamma-p.github.io.
Related papers
- MALMM: Multi-Agent Large Language Models for Zero-Shot Robotics Manipulation [52.739500459903724]
Large Language Models (LLMs) have demonstrated remarkable planning abilities across various domains, including robotics manipulation and navigation.
We propose a novel multi-agent LLM framework that distributes high-level planning and low-level control code generation across specialized LLM agents.
We evaluate our approach on nine RLBench tasks, including long-horizon tasks, and demonstrate its ability to solve robotics manipulation in a zero-shot setting.
arXiv Detail & Related papers (2024-11-26T17:53:44Z) - SELP: Generating Safe and Efficient Task Plans for Robot Agents with Large Language Models [24.22168861692322]
We present three key insights, equivalence voting, constrained decoding, and domain-specific fine-tuning.
Equivalence voting ensures consistency by generating and sampling multiple Linear Temporal Logic (LTL) formulas.
Constrained decoding then uses the generated formula to enforce the autoregressive inference of plans.
Domain-specific fine-tuning customizes LLMs to produce safe and efficient plans within specific task domains.
arXiv Detail & Related papers (2024-09-28T22:33:44Z) - Scaling Up Natural Language Understanding for Multi-Robots Through the Lens of Hierarchy [8.180994118420053]
Long-horizon planning is hindered by challenges such as uncertainty accumulation, computational complexity, delayed rewards and incomplete information.
This work proposes an approach to exploit the task hierarchy from human instructions to facilitate multi-robot planning.
arXiv Detail & Related papers (2024-08-15T14:46:13Z) - Meta Reasoning for Large Language Models [58.87183757029041]
We introduce Meta-Reasoning Prompting (MRP), a novel and efficient system prompting method for large language models (LLMs)
MRP guides LLMs to dynamically select and apply different reasoning methods based on the specific requirements of each task.
We evaluate the effectiveness of MRP through comprehensive benchmarks.
arXiv Detail & Related papers (2024-06-17T16:14:11Z) - Meta-Task Planning for Language Agents [13.550774629515843]
Large language model-based agents (LLM agents) have emerged as a promising paradigm for achieving artificial general intelligence (AGI)
This paper introduces Meta-Task Planning (MTP), a zero-shot methodology for collaborative LLM-based multi-agent systems.
MTP achieved an average $sim40%$ success rate on TravelPlanner, significantly higher than the state-of-the-art (SOTA) baseline.
arXiv Detail & Related papers (2024-05-26T10:33:17Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
Large Language Model (LLM) agents significantly extend the capabilities of standalone LLMs.
We propose a novel approach that decomposes the aforementioned capabilities into a planner, caller, and summarizer.
This modular framework facilitates individual updates and the potential use of smaller LLMs for building each capability.
arXiv Detail & Related papers (2024-01-14T16:17:07Z) - TaskBench: Benchmarking Large Language Models for Task Automation [82.2932794189585]
We introduce TaskBench, a framework to evaluate the capability of large language models (LLMs) in task automation.
Specifically, task decomposition, tool selection, and parameter prediction are assessed.
Our approach combines automated construction with rigorous human verification, ensuring high consistency with human evaluation.
arXiv Detail & Related papers (2023-11-30T18:02:44Z) - ADaPT: As-Needed Decomposition and Planning with Language Models [131.063805299796]
We introduce As-Needed Decomposition and Planning for complex Tasks (ADaPT)
ADaPT explicitly plans and decomposes complex sub-tasks as-needed, when the Large Language Models is unable to execute them.
Our results demonstrate that ADaPT substantially outperforms established strong baselines.
arXiv Detail & Related papers (2023-11-08T17:59:15Z) - Generalizable Long-Horizon Manipulations with Large Language Models [91.740084601715]
This work introduces a framework harnessing the capabilities of Large Language Models (LLMs) to generate primitive task conditions for generalizable long-horizon manipulations.
We create a challenging robotic manipulation task suite based on Pybullet for long-horizon task evaluation.
arXiv Detail & Related papers (2023-10-03T17:59:46Z) - LLM-Planner: Few-Shot Grounded Planning for Embodied Agents with Large
Language Models [27.318186938382233]
This study focuses on using large language models (LLMs) as a planner for embodied agents.
We propose a novel method, LLM-Planner, that harnesses the power of large language models to do few-shot planning.
arXiv Detail & Related papers (2022-12-08T05:46:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.