論文の概要: Comprehensive Methodology for Sample Augmentation in EEG Biomarker Studies for Alzheimers Risk Classification
- arxiv url: http://arxiv.org/abs/2411.17717v1
- Date: Wed, 20 Nov 2024 10:31:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-01 04:14:30.195314
- Title: Comprehensive Methodology for Sample Augmentation in EEG Biomarker Studies for Alzheimers Risk Classification
- Title(参考訳): アルツハイマー病リスク分類のための脳波バイオマーカー研究におけるサンプル増強の総合的手法
- Authors: Veronica Henao Isaza, David Aguillon, Carlos Andres Tobon Quintero, Francisco Lopera, John Fredy Ochoa Gomez,
- Abstract要約: 主な型であるアルツハイマー病(AD)は70%の症例である。
脳波測定はADリスクを識別する可能性を示しているが、信頼性の高い比較のために大規模なサンプルを取得することは困難である。
本研究では,信号処理,調和化,統計的手法を統合し,サンプルサイズを向上し,ADリスク分類の信頼性を向上させる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Background: Dementia, marked by cognitive decline, is a global health challenge. Alzheimer's disease (AD), the leading type, accounts for ~70% of cases. Electroencephalography (EEG) measures show promise in identifying AD risk, but obtaining large samples for reliable comparisons is challenging. Objective: This study integrates signal processing, harmonization, and statistical techniques to enhance sample size and improve AD risk classification reliability. Methods: We used advanced EEG preprocessing, feature extraction, harmonization, and propensity score matching (PSM) to balance healthy non-carriers (HC) and asymptomatic E280A mutation carriers (ACr). Data from four databases were harmonized to adjust site effects while preserving covariates like age and sex. PSM ratios (2:1, 5:1, 10:1) were applied to assess sample size impact on model performance. The final dataset underwent machine learning analysis with decision trees and cross-validation for robust results. Results: Balancing sample sizes via PSM significantly improved classification accuracy, ranging from 0.92 to 0.96 across ratios. This approach enabled precise risk identification even with limited samples. Conclusion: Integrating data processing, harmonization, and balancing techniques improves AD risk classification accuracy, offering potential for other neurodegenerative diseases.
- Abstract(参考訳): 背景:認知の低下を特徴とする認知症は、世界的な健康問題である。
アルツハイマー病(AD: Alzheimer's disease)は、主な疾患である。
脳波測定(EEG)はADリスクの同定に有望であるが、信頼性の高い比較のための大規模なサンプルの取得は困難である。
目的: 本研究は, 信号処理, 調和化, 統計的手法を統合し, サンプルサイズを向上し, ADリスク分類の信頼性を向上させる。
方法: 脳波前処理,特徴抽出,調和化,適応性スコアマッチング(PSM)を用いて,健康な非キャリア (HC) と非リンパ性E280A変異担体 (ACr) のバランスをとった。
4つのデータベースからのデータは、年齢や性別などの共変を保存しながら、サイト効果を調整するために調和された。
PSM比(2:1, 5:1, 10:1)を適用し, 試料サイズがモデル性能に及ぼす影響を検討した。
最終的なデータセットは、決定木と堅牢な結果のためのクロスバリデーションを用いて、機械学習分析が行われた。
結果: PSMによる試料径のバランシングにより, 分類精度は0.92から0.96の範囲で有意に向上した。
このアプローチにより、限られたサンプルであっても正確なリスク識別が可能となった。
結論: データ処理、調和、バランスの手法を統合することにより、ADリスク分類の精度が向上し、他の神経変性疾患の可能性がある。
関連論文リスト
- Improving Bias Correction Standards by Quantifying its Effects on Treatment Outcomes [54.18828236350544]
Propensity score matching (PSM) は、分析のために同等の人口を選択することで選択バイアスに対処する。
異なるマッチング手法は、すべての検証基準を満たす場合でも、同じタスクに対する平均処理効果(ATE)を著しく異なるものにすることができる。
この問題に対処するため,新しい指標A2Aを導入し,有効試合数を削減した。
論文 参考訳(メタデータ) (2024-07-20T12:42:24Z) - AXIAL: Attention-based eXplainability for Interpretable Alzheimer's Localized Diagnosis using 2D CNNs on 3D MRI brain scans [43.06293430764841]
本研究では,3次元MRIを用いたアルツハイマー病診断の革新的手法を提案する。
提案手法では,2次元CNNがボリューム表現を抽出できるソフトアテンション機構を採用している。
ボクセルレベルの精度では、どの領域に注意が払われているかを同定し、これらの支配的な脳領域を同定する。
論文 参考訳(メタデータ) (2024-07-02T16:44:00Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
近年のゲノムワイド・アソシエーション(GWAS)研究は、複雑な形質の遺伝的基盤を明らかにしているが、非ヨーロッパ系個体の低発現を示している。
そこで本研究では,マルチオミクスデータを用いて,多様な祖先間での疾患予測を改善することができるかを評価する。
論文 参考訳(メタデータ) (2024-04-26T16:39:50Z) - Undersampling and Cumulative Class Re-decision Methods to Improve
Detection of Agitation in People with Dementia [16.949993123698345]
消化は認知症(PwD)で最も多い症状の1つである。
前回の研究では、参加者17名から600日間のマルチモーダルウェアラブルセンサデータを収集し、1分間の窓での動揺を検出する機械学習モデルを開発した。
本稿では,まず,不均衡を解消するために異なるアンダーサンプリング手法を実装し,通常の動作データの20%だけが競合的動揺検出モデルの訓練に適しているという結論に至った。
論文 参考訳(メタデータ) (2023-02-07T03:14:00Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - Increasing the efficiency of randomized trial estimates via linear
adjustment for a prognostic score [59.75318183140857]
ランダム化実験による因果効果の推定は臨床研究の中心である。
歴史的借用法のほとんどは、厳格なタイプiエラー率制御を犠牲にして分散の削減を達成する。
論文 参考訳(メタデータ) (2020-12-17T21:10:10Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Predictive Modeling of ICU Healthcare-Associated Infections from
Imbalanced Data. Using Ensembles and a Clustering-Based Undersampling
Approach [55.41644538483948]
本研究は,集中治療室における危険因子の同定と医療関連感染症の予測に焦点をあてる。
感染発生率の低減に向けた意思決定を支援することを目的とする。
論文 参考訳(メタデータ) (2020-05-07T16:13:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。