論文の概要: Automatic EEG Independent Component Classification Using ICLabel in Python
- arxiv url: http://arxiv.org/abs/2411.17721v1
- Date: Wed, 20 Nov 2024 22:39:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-01 04:14:29.459742
- Title: Automatic EEG Independent Component Classification Using ICLabel in Python
- Title(参考訳): PythonにおけるICLabelを用いた脳波独立成分の自動分類
- Authors: Arnaud Delorme, Dung Truong, Luca Pion-Tonachini, Scott Makeig,
- Abstract要約: ICLabelはEEGLABにおいて重要なプラグイン機能である。
EEGデータの自動処理に対する強力なアプローチは、データをICA(Independent Component Analysis)によって分解し、ICLabelを使って結果の独立コンポーネント(IC)を分類することである。
EEGパイプラインはオープンソースのOctopaveインタプリタを実行する高性能コンピューティングをサポートしているが、ICLabelプラグインはOctopaveと互換性がない。
- 参考スコア(独自算出の注目度): 0.09999629695552195
- License:
- Abstract: ICLabel is an important plug-in function in EEGLAB, the most widely used software for EEG data processing. A powerful approach to automated processing of EEG data involves decomposing the data by Independent Component Analysis (ICA) and then classifying the resulting independent components (ICs) using ICLabel. While EEGLAB pipelines support high-performance computing (HPC) platforms running the open-source Octave interpreter, the ICLabel plug-in is incompatible with Octave because of its specialized neural network architecture. To enhance cross-platform compatibility, we developed a Python version of ICLabel that uses standard EEGLAB data structures. We compared ICLabel MATLAB and Python implementations to data from 14 subjects. ICLabel returns the likelihood of classification in 7 classes of components for each ICA component. The returned IC classifications were virtually identical between Python and MATLAB, with differences in classification percentage below 0.001%.
- Abstract(参考訳): ICLabelはEEGLABにおいて重要なプラグイン機能である。
EEGデータの自動処理に対する強力なアプローチは、データをICA(Independent Component Analysis)によって分解し、ICLabelを使って結果の独立コンポーネント(IC)を分類することである。
EEGLABパイプラインはオープンソースのOctopaveインタプリタを実行する高性能コンピューティング(HPC)プラットフォームをサポートしているが、ICLabelプラグインはOctopaveと互換性がない。
クロスプラットフォームの互換性を高めるため,標準EEGLABデータ構造を用いたICLabelのPythonバージョンを開発した。
ICLabel MATLABとPythonの実装を14の被験者のデータと比較した。
ICLabelはICAコンポーネントごとに7つのクラスのコンポーネントで分類される可能性を返す。
返却されたIC分類は、PythonとMATLABとほぼ同一であり、0.001%以下である。
関連論文リスト
- PyPulse: A Python Library for Biosignal Imputation [58.35269251730328]
PyPulseは,臨床およびウェアラブルの両方のセンサ設定において生体信号の計算を行うPythonパッケージである。
PyPulseのフレームワークは、非機械学習バイオリサーバーを含む幅広いユーザーベースに対して、使い勝手の良いモジュラーで拡張可能なフレームワークを提供する。
PyPulseはMITライセンスでGithubとPyPIでリリースしました。
論文 参考訳(メタデータ) (2024-12-09T11:00:55Z) - Investigating Resource-efficient Neutron/Gamma Classification ML Models Targeting eFPGAs [0.0]
オープンソース組み込みFPGA(eFPGA)フレームワークは、ハードウェアに機械学習モデルを実装するための、代替的で柔軟な経路を提供する。
完全連結ニューラルネットワーク(fcNN)と強化決定木(BDT)モデルのeFPGA実装のパラメータ空間について検討する。
この研究結果は、テストチップの一部として統合されるeFPGAファブリックの仕様策定を支援するために使用される。
論文 参考訳(メタデータ) (2024-04-19T20:03:30Z) - Physics-informed and Unsupervised Riemannian Domain Adaptation for Machine Learning on Heterogeneous EEG Datasets [53.367212596352324]
脳波信号物理を利用した教師なし手法を提案する。
脳波チャンネルをフィールド、ソースフリーなドメイン適応を用いて固定位置にマッピングする。
提案手法は脳-コンピュータインタフェース(BCI)タスクおよび潜在的なバイオマーカー応用におけるロバストな性能を示す。
論文 参考訳(メタデータ) (2024-03-07T16:17:33Z) - PyPOTS: A Python Toolbox for Data Mining on Partially-Observed Time
Series [0.0]
PyPOTSは、部分的に保存された時系列のデータマイニングと分析に特化した、オープンソースのPythonライブラリである。
これは、計算、分類、クラスタリング、予測の4つのタスクに分類される多様なアルゴリズムに容易にアクセスできる。
論文 参考訳(メタデータ) (2023-05-30T07:57:05Z) - Scalable and Precise Application-Centered Call Graph Construction for Python [4.655332013331494]
PyCGはPythonプログラムのコールグラフを構築するための最先端のアプローチである。
本稿では,Python プログラム用のアプリケーション中心のコールグラフを構築するためのスケーラブルで正確なアプローチを提案し,プロトタイプツール JARVIS として実装する。
1つの関数を入力として、JARVISは、フローセンシティブなプロセス内分析とプロセス間解析を行う、オンザフライのコールグラフを生成する。
論文 参考訳(メタデータ) (2023-05-10T07:40:05Z) - Leveraging Instance Features for Label Aggregation in Programmatic Weak
Supervision [75.1860418333995]
Programmatic Weak Supervision (PWS) は、トレーニングラベルを効率的に合成するための広く普及したパラダイムとして登場した。
PWSのコアコンポーネントはラベルモデルであり、複数のノイズ管理ソースの出力をラベル関数として集約することで、真のラベルを推論する。
既存の統計ラベルモデルは一般的にLFの出力のみに依存し、基礎となる生成過程をモデル化する際のインスタンスの特徴を無視している。
論文 参考訳(メタデータ) (2022-10-06T07:28:53Z) - Python for Smarter Cities: Comparison of Python libraries for static and
interactive visualisations of large vector data [0.0]
Pythonは簡潔で自然な構文を持ち、コンピュータサイエンスの背景を持たない市町村のスタッフにとって参入障壁は低い。
本研究では,大規模ベクトルデータセットの可視化生成に関して,Pythonエコシステムにおける顕著かつ活発に開発された可視化ライブラリを評価する。
短いリストのライブラリはすべて、小さなデータセットと大きなデータセットの両方のサンプルマップ製品を生成することができた。
論文 参考訳(メタデータ) (2022-02-26T10:23:29Z) - Scikit-dimension: a Python package for intrinsic dimension estimation [58.8599521537]
この技術ノートは、固有次元推定のためのオープンソースのPythonパッケージであるtextttscikit-dimensionを紹介している。
textttscikit-dimensionパッケージは、Scikit-learnアプリケーションプログラミングインターフェイスに基づいて、既知のID推定子のほとんどを均一に実装する。
パッケージを簡潔に記述し、実生活と合成データにおけるID推定手法の大規模(500以上のデータセット)ベンチマークでその使用を実証する。
論文 参考訳(メタデータ) (2021-09-06T16:46:38Z) - Data Engineering for HPC with Python [0.0]
データエンジニアリングは、さまざまなデータフォーマット、ストレージ、データ抽出、変換、データ移動を扱う。
データエンジニアリングの1つのゴールは、データを元のデータから、ディープラーニングや機械学習アプリケーションで受け入れられるベクトル/行列/テンソルフォーマットに変換することである。
データを表現および処理するためのテーブル抽象化に基づく分散Python APIを提案する。
論文 参考訳(メタデータ) (2020-10-13T11:53:11Z) - Pythonic Black-box Electronic Structure Tool (PyBEST). An open-source
Python platform for electronic structure calculations at the interface
between chemistry and physics [52.77024349608834]
Pythonic Black-box Electronic Structure Tool (PyBEST) はトルーンのニコラス・コペルニクス大学で開発された。
PyBESTは主にPython3プログラミング言語で書かれており、追加の部分はC++で書かれている。
PyBESTの大規模電子構造計算能力は、モデルビタミンB12化合物に対して実証された。
論文 参考訳(メタデータ) (2020-10-12T07:10:23Z) - pyBART: Evidence-based Syntactic Transformations for IE [52.93947844555369]
pyBARTは、英語のUD木を拡張UDグラフに変換するためのオープンソースのPythonライブラリである。
パターンに基づく関係抽出のシナリオで評価すると、より少ないパターンを必要としながら、より高精細なUDよりも高い抽出スコアが得られる。
論文 参考訳(メタデータ) (2020-05-04T07:38:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。