論文の概要: Analytic Continuation by Feature Learning
- arxiv url: http://arxiv.org/abs/2411.17728v1
- Date: Fri, 22 Nov 2024 05:12:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 15:27:34.371194
- Title: Analytic Continuation by Feature Learning
- Title(参考訳): 特徴学習による分析継続
- Authors: Zhe Zhao, Jingping Xu, Ce Wang, Yaping Yang,
- Abstract要約: 解析的継続は、実時間グリーン関数からリアルタイムスペクトル関数を再構成することを目的としている。
本稿では,スペクトル関数の予測精度を高めるために,特徴学習ネットワーク(FL-net)と呼ばれる新しいニューラルネットワークアーキテクチャを提案する。
- 参考スコア(独自算出の注目度): 8.498755880433713
- License:
- Abstract: Analytic continuation aims to reconstruct real-time spectral functions from imaginary-time Green's functions; however, this process is notoriously ill-posed and challenging to solve. We propose a novel neural network architecture, named the Feature Learning Network (FL-net), to enhance the prediction accuracy of spectral functions, achieving an improvement of at least $20\%$ over traditional methods, such as the Maximum Entropy Method (MEM), and previous neural network approaches. Furthermore, we develop an analytical method to evaluate the robustness of the proposed network. Using this method, we demonstrate that increasing the hidden dimensionality of FL-net, while leading to lower loss, results in decreased robustness. Overall, our model provides valuable insights into effectively addressing the complex challenges associated with analytic continuation.
- Abstract(参考訳): 解析的継続は、実時間グリーンの関数からリアルタイムスペクトル関数を再構築することを目的としているが、この過程は不適切で解決が難しいことで知られている。
本稿では,スペクトル関数の予測精度を最大エントロピー法(MEM)やそれ以前のニューラルネットワークアプローチなど,従来の手法よりも少なくとも20\%の精度向上を実現するために,特徴学習ネットワーク(FL-net)と呼ばれる新しいニューラルネットワークアーキテクチャを提案する。
さらに,提案するネットワークのロバスト性を評価するための解析手法を開発した。
本手法を用いて,FL-netの隠れ次元性の増加は損失の低減につながるが,ロバスト性は低下することを示した。
全体として、分析継続に伴う複雑な課題を効果的に解決する上で、我々のモデルは貴重な洞察を提供する。
関連論文リスト
- Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
その驚くべき振る舞いをより深く理解するために、トレーニングされたニューラルネットワークの単純かつ正確なモデルの有用性について検討する。
3つのケーススタディで、様々な顕著な現象に関する新しい経験的洞察を導き出すためにどのように適用できるかを説明します。
論文 参考訳(メタデータ) (2024-10-31T22:54:34Z) - Efficient Training of Deep Neural Operator Networks via Randomized Sampling [0.0]
ディープオペレータネットワーク(DeepNet)は、様々な科学的・工学的応用における複雑な力学のリアルタイム予測に成功している。
本稿では,DeepONetのトレーニングを取り入れたランダムサンプリング手法を提案する。
実験の結果,訓練中にトランクネットワーク入力にランダム化を組み込むことで,DeepONetの効率性と堅牢性が向上し,複雑な物理系のモデリングにおけるフレームワークの性能向上に期待できる道筋が得られた。
論文 参考訳(メタデータ) (2024-09-20T07:18:31Z) - From Fourier to Neural ODEs: Flow Matching for Modeling Complex Systems [20.006163951844357]
ニューラル常微分方程式(NODE)を学習するためのシミュレーション不要なフレームワークを提案する。
フーリエ解析を用いて、ノイズの多い観測データから時間的および潜在的高次空間勾配を推定する。
我々の手法は、トレーニング時間、ダイナミクス予測、堅牢性の観点から、最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2024-05-19T13:15:23Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
本稿では,ニューラルネットワークを一般化し,トランスフォーマーアーキテクチャを用いて獲得関数を学習する,エンド・ツー・エンドの差別化可能な最初のメタBOフレームワークを提案する。
我々は、この強化学習(RL)によるエンドツーエンドのフレームワークを、ラベル付き取得データの欠如に対処できるようにします。
論文 参考訳(メタデータ) (2023-05-25T10:58:46Z) - Approximation Power of Deep Neural Networks: an explanatory mathematical survey [0.0]
この調査では、ニューラルネットワークがターゲット関数をいかに効果的に近似するかを調べ、従来の近似法より優れている条件を特定する。
主なトピックは、ディープネットワークの非線形で構成的な構造と、回帰と分類設定における最適化問題としてのニューラルネットワークタスクの形式化である。
このサーベイは、深いReLUネットワークの近似能力と他の近似手法の近似能力を比較することで、連続関数空間におけるニューラルネットワークの密度を探索する。
論文 参考訳(メタデータ) (2022-07-19T18:47:44Z) - Functional Network: A Novel Framework for Interpretability of Deep
Neural Networks [2.641939670320645]
本稿では,深層ニューラルネットワーク,すなわち関数型ネットワークの解釈可能性に関する新しい枠組みを提案する。
本実験では, バッチ正規化とドロップアウトという正則化手法のメカニズムを明らかにした。
論文 参考訳(メタデータ) (2022-05-24T01:17:36Z) - Neural Dynamic Mode Decomposition for End-to-End Modeling of Nonlinear
Dynamics [49.41640137945938]
ニューラルネットワークに基づくリフト関数を推定するためのニューラルダイナミックモード分解法を提案する。
提案手法により,予測誤差はニューラルネットワークとスペクトル分解によって逆伝搬される。
提案手法の有効性を,固有値推定と予測性能の観点から実証した。
論文 参考訳(メタデータ) (2020-12-11T08:34:26Z) - Kernel-Based Smoothness Analysis of Residual Networks [85.20737467304994]
ResNets(Residual Networks)は、これらの強力なモダンアーキテクチャの中でも際立っている。
本稿では,2つのモデル,すなわちResNetsが勾配よりもスムーズな傾向を示す。
論文 参考訳(メタデータ) (2020-09-21T16:32:04Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z) - Untangling tradeoffs between recurrence and self-attention in neural
networks [81.30894993852813]
本稿では,再帰的ネットワークにおける自己注意が勾配伝播に与える影響を公式に分析する。
長期的な依存関係を捉えようとするとき、勾配をなくすことの問題を緩和することを証明する。
本稿では,スパース自己アテンションを反復的にスケーラブルに利用するための関連性スクリーニング機構を提案する。
論文 参考訳(メタデータ) (2020-06-16T19:24:25Z) - A deep learning framework for solution and discovery in solid mechanics [1.4699455652461721]
本稿では,物理情報ニューラルネットワーク(PINN)と呼ばれるディープラーニングのクラスを,固体力学の学習と発見に応用する。
本稿では, 運動量バランスと弾性の関係をPINNに組み込む方法について解説し, 線形弾性への応用について詳細に検討する。
論文 参考訳(メタデータ) (2020-02-14T08:24:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。