Constraining symmetron fields with a levitated optomechanical system
- URL: http://arxiv.org/abs/2411.17744v1
- Date: Mon, 25 Nov 2024 07:31:40 GMT
- Title: Constraining symmetron fields with a levitated optomechanical system
- Authors: Jiawei Li, Ka-di Zhu,
- Abstract summary: The symmetron is thought to modify the gravitational force when it couples to matter.
detecting the symmetron field is challenging due to its screening behavior in the high-density environment of traditional measurements.
We propose a scheme to set constraints on the parameters of the symmetron with a levitated optomechanical system.
- Score: 5.72243026664695
- License:
- Abstract: The symmetron, one of the light scalar fields introduced by dark energy theories, is thought to modify the gravitational force when it couples to matter. However, detecting the symmetron field is challenging due to its screening behavior in the high-density environment of traditional measurements. In this paper, we propose a scheme to set constraints on the parameters of the symmetron with a levitated optomechanical system, in which a nanosphere serves as a testing mass coupled to an optical cavity. By measuring the frequency shift of the probe transmission spectrum, we can establish constraints for our scheme by calculating the symmetron-induced influence. These refined constraints improve by 1 to 3 orders of magnitude compared to current force-based detection methods, which offer new opportunities for the dark energy detection.
Related papers
- Squeezing for Broadband Multidimensional Variational Measurement [55.2480439325792]
We show that optical losses inside cavity restrict back action exclusion due to loss noise.
We analyze how two-photon (nondegenerate) and conventional (degenerate) squeezing improve sensitivity with account optical losses.
arXiv Detail & Related papers (2023-10-06T18:41:29Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [43.80709028066351]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Enhanced optomechanical interaction in the unbalanced interferometer [40.96261204117952]
Quantum optomechanical systems enable the study of fundamental questions on quantum nature of massive objects.
Here we propose a modification of the Michelson-Sagnac interferometer, which allows to boost the optomechanical coupling strength.
arXiv Detail & Related papers (2023-05-11T14:24:34Z) - Entanglement-Enhanced Optomechanical Sensing [2.152481479747191]
Optomechanical systems have been exploited in ultrasensitive measurements of force, acceleration, and magnetic fields.
We show that joint force measurements taken with entangled probes on multiple optomechanical sensors can improve the bandwidth in the thermal-noise-dominant regime.
The demonstrated entanglement-enhanced optomechanical sensing could enable new capabilities for inertial navigation, acoustic imaging, and searches for new physics.
arXiv Detail & Related papers (2022-10-28T14:51:16Z) - Entanglement Meter: Estimation of entanglement with single copy in
Interferometer [0.0]
We show that several entanglement detection methods can be implemented efficiently in a Mach-Zehnder Interferometric set-up.
Our proposals bring out the power of Interferometric set-up in entanglement detection of pure and several mixed states.
arXiv Detail & Related papers (2022-09-30T17:11:18Z) - Tunneling Gravimetry [58.80169804428422]
We examine the prospects of utilizing matter-wave Fabry-P'erot interferometers for enhanced inertial sensing applications.
Our study explores such tunneling-based sensors for the measurement of accelerations in two configurations.
arXiv Detail & Related papers (2022-05-19T09:22:11Z) - Broadband Coherent Multidimensional Variational Measurement [0.0]
We show that usage of a multidimensional optical transducer may enable a broadband quantum back action evading measurement.
We discuss how proposed scheme relates to multidimensional system containing quantum-free subsystems.
arXiv Detail & Related papers (2022-05-07T19:52:25Z) - Proposal for constraining non-Newtonian gravity at nm range via
criticality enhanced measurement of resonance frequency shift [7.973708885357668]
We set a constraint on the non-Newtonian gravity which improves the previous bounds by about a factor of 7 at 1 nanometer range.
Our results indicate that our method could be put into consideration in relevant experimental searches.
arXiv Detail & Related papers (2021-07-25T13:54:05Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Optimal estimation of time-dependent gravitational fields with quantum
optomechanical systems [0.0]
We study the fundamental sensitivity that can be achieved with an ideal optomechanical system in the nonlinear regime.
We specifically apply our results to the measurement of gravitational fields from small oscillating masses.
arXiv Detail & Related papers (2020-08-14T18:00:01Z) - Proposal for an optical interferometric measurement of the gravitational
red-shift with satellite systems [52.77024349608834]
Einstein Equivalence Principle (EEP) underpins all metric theories of gravity.
The iconic gravitational red-shift experiment places two fermionic systems, used as clocks, in different gravitational potentials.
A fundamental point in the implementation of a satellite large-distance optical interferometric experiment is the suppression of the first-order Doppler effect.
We propose a novel scheme to suppress it, by subtracting the phase-shifts measured in the one-way and in the two-way configuration between a ground station and a satellite.
arXiv Detail & Related papers (2018-11-12T16:25:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.