Proposal for constraining non-Newtonian gravity at nm range via
criticality enhanced measurement of resonance frequency shift
- URL: http://arxiv.org/abs/2107.11807v1
- Date: Sun, 25 Jul 2021 13:54:05 GMT
- Title: Proposal for constraining non-Newtonian gravity at nm range via
criticality enhanced measurement of resonance frequency shift
- Authors: Lei Chen, Jian Liu, and Ka-di Zhu
- Abstract summary: We set a constraint on the non-Newtonian gravity which improves the previous bounds by about a factor of 7 at 1 nanometer range.
Our results indicate that our method could be put into consideration in relevant experimental searches.
- Score: 7.973708885357668
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a quantum mechanical method of constraining non-Newtonian gravity
at the nanometer range. In this method, a hybrid electro-optomechanical system
is employed. Applying a strong driving field, we can obtain normal mode
splitting of the electromechanical subsystem which is related to the resonance
frequency of the mechanical oscillator. Moreover, we investigate the
relationship between the variance of normal mode splitting and the resonance
frequency shift induced by the gradient of exotic forces provided that our
system is operated at critical points. Furthermore, via suppressing the Casimir
background, we set a constraint on the non-Newtonian gravity which improves the
previous bounds by about a factor of 7 at 1 nanometer range. Our results
indicate that our method could be put into consideration in relevant
experimental searches.
Related papers
- Enhancing entanglement in nano-mechanical oscillators via hybrid optomechanical systems [0.0]
We compare four criteria for continuous-variable entanglement, which serve as sufficient conditions for determining the separability of Gaussian two-mode states.
Our findings indicate that while the applied inseparability criteria show similar entanglement patterns within specific parameter ranges, the degree of entanglement varies depending on the chosen criteria.
arXiv Detail & Related papers (2024-10-20T09:37:30Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Improved constraints on minimum length models with a macroscopic low
loss phonon cavity [1.299941371793082]
Experimental tests of the generalised uncertainty principle can be performed by searching for the induced frequency perturbations of the modes of mechanical resonators.
In this work previous constraints made with mechanical resonators are improved upon by three orders of magnitude.
As well as purely mechanical resonant modes; hybrid electromechanical anti-resonant modes are investigated, and shown to be sensitive to the same GUP induced effects.
arXiv Detail & Related papers (2023-04-03T02:36:55Z) - Strong mechanical squeezing in a microcavity with double quantum wells [0.0]
In a hybrid quantum system composed of two quantum wells placed inside a cavity with a moving end mirror pumped by bichromatic coherent light, we address the formation of squeezed states of a mechanical resonator.
We show that the robustness of this squeezing against thermal fluctuations is important for practical applications of such systems.
arXiv Detail & Related papers (2023-02-01T16:00:55Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - Measuring the magnon-photon coupling in shaped ferromagnets: tuning of
the resonance frequency [50.591267188664666]
cavity photons and ferromagnetic spins excitations can exchange information coherently in hybrid architectures.
Speed enhancement is usually achieved by optimizing the geometry of the electromagnetic cavity.
We show that the geometry of the ferromagnet plays also an important role, by setting the fundamental frequency of the magnonic resonator.
arXiv Detail & Related papers (2022-07-08T11:28:31Z) - Tuning the mode-splitting of a semiconductor microcavity with uniaxial
stress [49.212762955720706]
In this work we use an open microcavity composed of a "bottom" semiconductor distributed Bragg reflector (DBR) incorporating an n-i-p heterostructure.
We demonstrate a reversible in-situ technique to tune the mode-splitting by applying uniaxial stress to the semiconductor DBR.
A thorough study of the mode-splitting and its tuning across the stop-band leads to a quantitative understanding of the mechanism behind the results.
arXiv Detail & Related papers (2021-02-18T13:38:32Z) - Driving-induced resonance narrowing in a strongly coupled cavity-qubit
system [0.7943023838493658]
We study a system consisting of a superconducting flux qubit strongly coupled to a microwave cavity.
We observe resonance narrowing in the region where the splitting between the two dressed fundamental resonances is tuned to zero.
arXiv Detail & Related papers (2020-08-01T09:29:45Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Beyond linear coupling in microwave optomechanics [0.0]
We analyze the results in the framework of an extended nonlinear optomechanical theory.
No thermo-optical instabilities are observed, in contrast with laser-driven systems.
We find that the motion imprints a wide comb of extremely narrow peaks in the microwave output field.
arXiv Detail & Related papers (2020-03-06T13:12:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.