論文の概要: Path Loss Prediction Using Deep Learning
- arxiv url: http://arxiv.org/abs/2411.17752v2
- Date: Mon, 13 Jan 2025 18:03:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 21:19:24.807557
- Title: Path Loss Prediction Using Deep Learning
- Title(参考訳): ディープラーニングを用いた経路損失予測
- Authors: Ryan G. Dempsey, Jonathan Ethier, Halim Yanikomeroglu,
- Abstract要約: 通信リンクに沿った障害はしばしば暗黙的に、あるいは代表的クラッタの高さや全障害深さなどの派生メトリクスを通して考慮される。
畳み込みニューラルネットワークを用いて高分解能障害物高さマップから特徴抽出を自動的に行う経路固有経路損失予測法を提案する。
- 参考スコア(独自算出の注目度): 20.62701088477552
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Radio deployments and spectrum planning benefit from path loss predictions. Obstructions along a communications link are often considered implicitly or through derived metrics such as representative clutter height or total obstruction depth. In this paper, we propose a path-specific path loss prediction method that uses convolutional neural networks to automatically perform feature extraction from high-resolution obstruction height maps. Our methods result in low prediction error in a variety of environments without requiring derived metrics.
- Abstract(参考訳): 無線の展開とスペクトル計画は、経路損失予測の恩恵を受ける。
通信リンクに沿った障害はしばしば暗黙的に、あるいは代表的クラッタの高さや全障害深さなどの派生メトリクスを通して考慮される。
本稿では,畳み込みニューラルネットワークを用いて高分解能障害物高度マップから特徴抽出を自動的に行う経路固有経路損失予測手法を提案する。
提案手法は, 様々な環境下での予測誤差を低減し, 導出した指標を必要としない。
関連論文リスト
- Reciprocity-Aware Convolutional Neural Networks for Map-Based Path Loss Prediction [20.62701088477552]
経路損失モデリングは、送信機(Tx)から受信機(Rx)への通信リンクに沿ったポイント・ツー・ポイント損失を推定するための広く使われている手法である。
現代のパス損失モデリングは、しばしばデータ駆動アプローチを活用し、機械学習を使用して、駆動テスト計測データセットのモデルをトレーニングする。
本稿では、アップリンク、ダウンリンク、バックホールシナリオに一般化されたパス損失モデルをトレーニングするために、データ拡張が利用可能であることを実証する。
論文 参考訳(メタデータ) (2025-04-04T17:44:14Z) - Investigating Map-Based Path Loss Models: A Study of Feature Representations in Convolutional Neural Networks [20.62701088477552]
畳み込みニューラルネットワークにおけるスカラー特徴の表現法について検討する。
画像チャネルとしてのスカラー特徴の表現が最強の一般化をもたらすことが判明した。
論文 参考訳(メタデータ) (2025-01-13T18:15:01Z) - TopoSD: Topology-Enhanced Lane Segment Perception with SDMap Prior [70.84644266024571]
我々は、標準定義地図(SDMaps)を見るために知覚モデルを訓練することを提案する。
我々はSDMap要素をニューラル空間マップ表現やインスタンストークンにエンコードし、先行情報のような補完的な特徴を組み込む。
レーンセグメント表現フレームワークに基づいて、モデルはレーン、中心線、およびそれらのトポロジを同時に予測する。
論文 参考訳(メタデータ) (2024-11-22T06:13:42Z) - Clutter Classification Using Deep Learning in Multiple Stages [0.0]
本稿では,衛星画像への深層学習の適用について検討し,環境クラッタのタイプを自動的に識別する。
障害の種類を知ることで、経路損失などの重要な伝搬指標の予測精度が向上する。
論文 参考訳(メタデータ) (2024-08-08T12:16:14Z) - Transformer-Based Neural Surrogate for Link-Level Path Loss Prediction
from Variable-Sized Maps [11.327456466796681]
送信機と受信機の位置に対する経路損失の推定は、ネットワーク計画やハンドオーバを含む多くのユースケースにおいて重要である。
本稿では,様々な次元の地図やスパース測定からリンクレベルの特性を予測できるトランスフォーマーベースのニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-10-06T20:17:40Z) - Enhancing Mapless Trajectory Prediction through Knowledge Distillation [19.626383744807068]
ハイデフィニションマップ(HDマップ)は、アノテーションの高コストや、広く使われることを制限する法律の制限に悩まされる可能性がある。
本稿では,マルチモーダルな予測軌道の整合性と実際の道路トポロジの整合性を改善する問題に取り組む。
我々の解は、一般的な軌道予測ネットワークに対して一般化可能であり、余分な計算負担を伴わない。
論文 参考訳(メタデータ) (2023-06-25T09:05:48Z) - Can Forward Gradient Match Backpropagation? [2.875726839945885]
フォワードグラディエントはニューラルネットワークトレーニングに有効であることが示されている。
我々は、小さな局所的な補助ネットワークから得られるフィードバックなど、より有望な方向の勾配推定を強く偏り付けることを提案する。
局所損失から得られた勾配を候補方向として用いた場合,前方勾配法におけるランダムノイズを大幅に改善することがわかった。
論文 参考訳(メタデータ) (2023-06-12T08:53:41Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
我々は, 正規サンプルの分布を低次元多様体で支持する異常検出において, 特定のユースケースに焦点を当てた。
我々は、訓練中に識別情報を活用する自己指導型学習体制に適応するが、通常の例のサブ多様体に焦点をあてる。
製造領域における視覚異常検出のための挑戦的なベンチマークであるMVTec ADデータセットで、最先端の新たな結果を達成する。
論文 参考訳(メタデータ) (2022-06-23T14:16:30Z) - Robust Depth Completion with Uncertainty-Driven Loss Functions [60.9237639890582]
本研究では,不確実性による損失関数を導入し,深度補修の堅牢性を改善し,深度補修の不確実性に対処する。
提案手法は,KITTI深度評価ベンチマークでテストされ,MAE, IMAE, IRMSEの計測値を用いて最先端のロバスト性性能を達成した。
論文 参考訳(メタデータ) (2021-12-15T05:22:34Z) - A Graph Convolutional Network with Signal Phasing Information for
Arterial Traffic Prediction [63.470149585093665]
動脈交通予測は 現代のインテリジェント交通システムの発展に 重要な役割を担っています
動脈交通予測に関する既存の研究の多くは、ループセンサからの流量と占有率の時間的測定のみを考慮し、上流と下流の検出器間のリッチな空間的関係を無視している。
我々は,信号タイミング計画から発生する空間情報を用いて,深層学習アプローチである拡散畳み込みリカレントニューラルネットワークを強化することで,このギャップを埋める。
論文 参考訳(メタデータ) (2020-12-25T01:40:29Z) - Trajectory Prediction in Autonomous Driving with a Lane Heading
Auxiliary Loss [1.1470070927586014]
本稿では,全ての予測モードにおいて予測駆動ルールを強制することにより,軌道予測モデルを強化する損失関数を提案する。
軌道予測への我々の貢献は2倍であり、オフロードレート計量の故障事例に対処する新しい指標を提案する。
次に、この補助損失を用いて、MTP(Multiple trajectory Prediction)モデルとMultiPathモデルを拡張する。
論文 参考訳(メタデータ) (2020-11-12T22:51:25Z) - Promoting Connectivity of Network-Like Structures by Enforcing Region
Separation [101.10228007363673]
本稿では,ネットワークのような構造を再構築するために,深い畳み込みネットワークをトレーニングするための接続性指向の損失関数を提案する。
私たちの喪失の背後にある主な考え方は、画像の背景領域間で発生する断線の観点から、道路や運河の接続性を表現することです。
2つの標準的な道路ベンチマークと、新しい灌水用運河のデータセットの実験において、損失関数で訓練されたコンブネットが道路接続を回復できることが示されている。
論文 参考訳(メタデータ) (2020-09-15T12:21:35Z) - Deep Modeling of Growth Trajectories for Longitudinal Prediction of
Missing Infant Cortical Surfaces [58.780482825156035]
空間グラフ畳み込みニューラルネットワーク(GCNN)を用いた皮質表面の経時的予測法を提案する。
提案手法は,皮質成長軌跡をモデル化し,複数点の内曲面と外曲面を共同で予測する。
本手法が時間的皮質成長パターンの非線形性を捉えることができることを示す。
論文 参考訳(メタデータ) (2020-09-06T18:46:04Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
本稿では,モデル予測制御(MPC)の定式化を拡張したオンライン経路計画アーキテクチャを提案する。
我々のアルゴリズムは、状態推定の共分散を推論するリカレントニューラルネットワーク(RNN)とオブジェクト検出パイプラインを組み合わせる。
本手法のロバスト性は, 複雑な四足歩行ロボットの力学で検証され, ほとんどのロボットプラットフォームに適用可能である。
論文 参考訳(メタデータ) (2020-07-28T07:34:30Z) - Beyond Dropout: Feature Map Distortion to Regularize Deep Neural
Networks [107.77595511218429]
本稿では,ディープニューラルネットワークの中間層に関連する実験的なRademacher複雑性について検討する。
上記の問題に対処するための特徴歪み法(Disout)を提案する。
より高い試験性能を有するディープニューラルネットワークを作製するための特徴写像歪みの優位性を解析し、実証した。
論文 参考訳(メタデータ) (2020-02-23T13:59:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。