論文の概要: Reciprocity-Aware Convolutional Neural Networks for Map-Based Path Loss Prediction
- arxiv url: http://arxiv.org/abs/2504.03625v1
- Date: Fri, 04 Apr 2025 17:44:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-07 14:47:13.720874
- Title: Reciprocity-Aware Convolutional Neural Networks for Map-Based Path Loss Prediction
- Title(参考訳): 地図に基づく経路損失予測のための相互性を考慮した畳み込みニューラルネットワーク
- Authors: Ryan G. Dempsey, Jonathan Ethier, Halim Yanikomeroglu,
- Abstract要約: 経路損失モデリングは、送信機(Tx)から受信機(Rx)への通信リンクに沿ったポイント・ツー・ポイント損失を推定するための広く使われている手法である。
現代のパス損失モデリングは、しばしばデータ駆動アプローチを活用し、機械学習を使用して、駆動テスト計測データセットのモデルをトレーニングする。
本稿では、アップリンク、ダウンリンク、バックホールシナリオに一般化されたパス損失モデルをトレーニングするために、データ拡張が利用可能であることを実証する。
- 参考スコア(独自算出の注目度): 20.62701088477552
- License:
- Abstract: Path loss modeling is a widely used technique for estimating point-to-point losses along a communications link from transmitter (Tx) to receiver (Rx). Accurate path loss predictions can optimize use of the radio frequency spectrum and minimize unwanted interference. Modern path loss modeling often leverages data-driven approaches, using machine learning to train models on drive test measurement datasets. Drive tests primarily represent downlink scenarios, where the Tx is located on a building and the Rx is located on a moving vehicle. Consequently, trained models are frequently reserved for downlink coverage estimation, lacking representation of uplink scenarios. In this paper, we demonstrate that data augmentation can be used to train a path loss model that is generalized to uplink, downlink, and backhaul scenarios, training using only downlink drive test measurements. By adding a small number of synthetic samples representing uplink scenarios to the training set, root mean squared error is reduced by >8 dB on uplink examples in the test set.
- Abstract(参考訳): 経路損失モデリングは、送信機(Tx)から受信機(Rx)への通信リンクに沿ったポイント・ツー・ポイント損失を推定する手法として広く用いられている。
正確な経路損失予測は、無線周波数スペクトルの使用を最適化し、不要な干渉を最小限にすることができる。
現代のパス損失モデリングは、しばしばデータ駆動アプローチを活用し、機械学習を使用して、駆動テスト計測データセットのモデルをトレーニングする。
ドライブテストは、主に、Txが建物の上にあり、Rxが動く車両の上にあるダウンリンクシナリオを表す。
その結果、トレーニングされたモデルは、アップリンクシナリオの表現を欠いたダウンリンクカバレッジ推定のためにしばしば予約される。
本稿では,データ拡張を用いて,ダウンリンク,ダウンリンク,バックホールシナリオに一般化されたパス損失モデルをトレーニングし,ダウンリンク駆動テスト測定のみを用いたトレーニングを行うことを実証する。
トレーニングセットにアップリンクシナリオを表す少数の合成サンプルを追加することで、テストセットのアップリンク例では、ルート平均2乗誤差が >8 dB に削減される。
関連論文リスト
- Radio Map Estimation -- An Open Dataset with Directive Transmitter
Antennas and Initial Experiments [49.61405888107356]
実世界の現実的な都市地図とオープンなデータソースからの航空画像とともに、シミュレーションされた経路損失無線マップのデータセットをリリースする。
モデルアーキテクチャ,入力特徴設計,航空画像からの無線マップの推定に関する実験を行った。
論文 参考訳(メタデータ) (2024-01-12T14:56:45Z) - Transformer-Based Neural Surrogate for Link-Level Path Loss Prediction
from Variable-Sized Maps [11.327456466796681]
送信機と受信機の位置に対する経路損失の推定は、ネットワーク計画やハンドオーバを含む多くのユースケースにおいて重要である。
本稿では,様々な次元の地図やスパース測定からリンクレベルの特性を予測できるトランスフォーマーベースのニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-10-06T20:17:40Z) - Estimating Link Flows in Road Networks with Synthetic Trajectory Data
Generation: Reinforcement Learning-based Approaches [7.369475193451259]
本稿では,限られた交通量と車両軌道データを組み合わせることで,道路網内のリンクフローを推定する問題に対処する。
本稿では,車両の連接動作を逐次決定問題として定式化する,新しい生成モデルフレームワークを提案する。
発生した人口車両軌跡が観測された交通量と軌跡データと一致していることを確認するために,逆強化学習と制約強化学習に基づく2つの手法を提案する。
論文 参考訳(メタデータ) (2022-06-26T13:14:52Z) - Radar Image Reconstruction from Raw ADC Data using Parametric
Variational Autoencoder with Domain Adaptation [0.0]
本研究では,パラメータ制約付き変分オートエンコーダを提案し,レンジ角画像上でクラスタ化および局所化されたターゲット検出を生成する。
実際のレーダデータを用いて可能なすべてのシナリオにおいて,提案するニューラルネットワークをトレーニングする問題を回避すべく,ドメイン適応戦略を提案する。
論文 参考訳(メタデータ) (2022-05-30T16:17:36Z) - Truncated tensor Schatten p-norm based approach for spatiotemporal
traffic data imputation with complicated missing patterns [77.34726150561087]
本研究は, モード駆動繊維による3症例の欠失を含む, 4症例の欠失パターンについて紹介する。
本モデルでは, 目的関数の非性にもかかわらず, 乗算器の交互データ演算法を統合することにより, 最適解を導出する。
論文 参考訳(メタデータ) (2022-05-19T08:37:56Z) - Learning spatiotemporal features from incomplete data for traffic flow
prediction using hybrid deep neural networks [0.28675177318965034]
本研究では,カリフォルニア・フリーウェイ・パフォーマンス・計測システム(PeMS)のトラフィックフローを,欠落した値で予測するハイブリッドディープニューラルネットワークに焦点を当てた。
RNNとCNNをベースとして,並列接続と並列接続の異なるアーキテクチャ構成が検討されている。
PeMSから得られた2つの異なるデータセットを総合的に分析した結果,平均計算手法を用いたシリーズ並列ハイブリッドネットワークは,交通流の予測において最も低い誤差を達成できることがわかった。
論文 参考訳(メタデータ) (2022-04-21T15:57:08Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
3つの単純なアイデアにより、より広いパラメトリックな確率比のクラスを用いてDROでモデルを訓練することができる。
パラメトリック逆数を用いてトレーニングしたモデルは、他のDROアプローチと比較して、サブポピュレーションシフトに対して一貫して頑健であることがわかった。
論文 参考訳(メタデータ) (2022-04-13T12:43:12Z) - iSDF: Real-Time Neural Signed Distance Fields for Robot Perception [64.80458128766254]
iSDFは実時間符号付き距離場再構成のための連続学習システムである。
より正確な再構築と、衝突コストと勾配のより良い近似を生成する。
論文 参考訳(メタデータ) (2022-04-05T15:48:39Z) - Ranking Distance Calibration for Cross-Domain Few-Shot Learning [91.22458739205766]
数ショット学習の最近の進歩は、より現実的なクロスドメイン設定を促進する。
ドメインギャップとソースとターゲットデータセット間のラベル空間の相違により、共有される知識は極めて限られている。
我々は,タスク内の相互k-アネレスト近傍を発見することで,目標距離行列の校正を行う。
論文 参考訳(メタデータ) (2021-12-01T03:36:58Z) - Transformer-based Map Matching Model with Limited Ground-Truth Data
using Transfer-Learning Approach [6.510061176722248]
多くのトラジェクトリベースのアプリケーションでは、生のGPSトラジェクトリをデジタルマップの道路網にマッピングする必要がある。
本稿では,データの観点から地図マッチングの課題を考察し,深層学習に基づく地図マッチングモデルを提案する。
合成軌道データを生成し,トランスフォーマーモデルを事前学習し,有限個の接地トラスデータでモデルを微調整する。
論文 参考訳(メタデータ) (2021-08-01T11:51:11Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
本稿では,正弦波数を検出するニューラルネットワークアーキテクチャであるSignalNetを提案する。
基礎となるデータ分布と比較して,ネットワークの結果を比較するための最悪の学習しきい値を導入する。
シミュレーションでは、我々のアルゴリズムは常に3ビットデータのしきい値を超えることができるが、しばしば1ビットデータのしきい値を超えることはできない。
論文 参考訳(メタデータ) (2021-06-10T04:21:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。