PP-LEM: Efficient and Privacy-Preserving Clearance Mechanism for Local Energy Markets
- URL: http://arxiv.org/abs/2411.17758v1
- Date: Tue, 26 Nov 2024 00:22:31 GMT
- Title: PP-LEM: Efficient and Privacy-Preserving Clearance Mechanism for Local Energy Markets
- Authors: Kamil Erdayandi, Mustafa Asan Mustafa,
- Abstract summary: PP-LEM incorporates a novel competitive game-theoretical clearance mechanism, modelled as a Stackelberg Game.
Based on this mechanism, a privacy-preserving market model is developed using a partially homomorphic cryptosystem.
- Score: 0.0
- License:
- Abstract: In this paper, we propose a novel Privacy-Preserving clearance mechanism for Local Energy Markets (PP-LEM), designed for computational efficiency and social welfare. PP-LEM incorporates a novel competitive game-theoretical clearance mechanism, modelled as a Stackelberg Game. Based on this mechanism, a privacy-preserving market model is developed using a partially homomorphic cryptosystem, allowing buyers' reaction function calculations to be executed over encrypted data without exposing sensitive information of both buyers and sellers. The comprehensive performance evaluation demonstrates that PP-LEM is highly effective in delivering an incentive clearance mechanism with computational efficiency, enabling it to clear the market for 200 users within the order of seconds while concurrently protecting user privacy. Compared to the state of the art, PP-LEM achieves improved computational efficiency without compromising social welfare while still providing user privacy protection.
Related papers
- Communication-Efficient and Privacy-Adaptable Mechanism for Federated Learning [33.267664801299354]
Training machine learning models on decentralized private data via federated learning (FL) poses two key challenges: communication efficiency and privacy protection.
We introduce a novel approach called the Communication-Efficient and Privacy-Adaptable Mechanism (CEPAM), achieving both objectives simultaneously.
We analyze the trade-offs among user privacy, global utility, and transmission rate of CEPAM by defining appropriate metrics for FL with differential privacy and compression.
arXiv Detail & Related papers (2025-01-21T11:16:05Z) - The Communication-Friendly Privacy-Preserving Machine Learning against Malicious Adversaries [14.232901861974819]
Privacy-preserving machine learning (PPML) is an innovative approach that allows for secure data analysis while safeguarding sensitive information.
We introduce efficient protocol for secure linear function evaluation.
We extend the protocol to handle linear and non-linear layers, ensuring compatibility with a wide range of machine-learning models.
arXiv Detail & Related papers (2024-11-14T08:55:14Z) - TinyML NLP Approach for Semantic Wireless Sentiment Classification [49.801175302937246]
We introduce split learning (SL) as an energy-efficient alternative, privacy-preserving tiny machine learning (MLTiny) scheme.
Our results show that SL reduces processing power and CO2 emissions while maintaining high accuracy, whereas FL offers a balanced compromise between efficiency and privacy.
arXiv Detail & Related papers (2024-11-09T21:26:59Z) - Privacy-Preserving Billing for Local Energy Markets [1.1823918493146686]
We propose a privacy-preserving billing protocol for local energy markets (PBP-LEM) that takes into account market participants' energy volume deviations from their bids.
PBP-LEM enables a group of market entities to jointly compute participants' bills in a decentralized and privacy-preserving manner without sacrificing correctness.
arXiv Detail & Related papers (2024-04-24T14:12:56Z) - Chained-DP: Can We Recycle Privacy Budget? [18.19895364709435]
We propose a novel Chained-DP framework enabling users to carry out data aggregation sequentially to recycle the privacy budget.
We show the mathematical nature of the sequential game, solve its Nash Equilibrium, and design an incentive mechanism with provable economic properties.
Our numerical simulation validates the effectiveness of Chained-DP, showing that it can significantly save privacy budget and lower estimation error compared to the traditional LDP mechanism.
arXiv Detail & Related papers (2023-09-12T08:07:59Z) - Theoretically Principled Federated Learning for Balancing Privacy and
Utility [61.03993520243198]
We propose a general learning framework for the protection mechanisms that protects privacy via distorting model parameters.
It can achieve personalized utility-privacy trade-off for each model parameter, on each client, at each communication round in federated learning.
arXiv Detail & Related papers (2023-05-24T13:44:02Z) - A Randomized Approach for Tight Privacy Accounting [63.67296945525791]
We propose a new differential privacy paradigm called estimate-verify-release (EVR)
EVR paradigm first estimates the privacy parameter of a mechanism, then verifies whether it meets this guarantee, and finally releases the query output.
Our empirical evaluation shows the newly proposed EVR paradigm improves the utility-privacy tradeoff for privacy-preserving machine learning.
arXiv Detail & Related papers (2023-04-17T00:38:01Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
We consider a federated data analytics problem in which a server coordinates the collaborative data analysis of multiple users with privacy concerns and limited communication capability.
We study the local differential privacy guarantees of discrete-valued mechanisms with finite output space through the lens of $f$-differential privacy (DP)
More specifically, we advance the existing literature by deriving tight $f$-DP guarantees for a variety of discrete-valued mechanisms.
arXiv Detail & Related papers (2023-02-19T16:58:53Z) - Decentralized Stochastic Optimization with Inherent Privacy Protection [103.62463469366557]
Decentralized optimization is the basic building block of modern collaborative machine learning, distributed estimation and control, and large-scale sensing.
Since involved data, privacy protection has become an increasingly pressing need in the implementation of decentralized optimization algorithms.
arXiv Detail & Related papers (2022-05-08T14:38:23Z) - MPCLeague: Robust MPC Platform for Privacy-Preserving Machine Learning [5.203329540700177]
This thesis focuses on designing efficient MPC frameworks for 2, 3 and 4 parties, with at most one corruption and supports ring structures.
We propose two variants for each of our frameworks, with one variant aiming to minimise the execution time while the other focuses on the monetary cost.
arXiv Detail & Related papers (2021-12-26T09:25:32Z) - Exploiting Submodular Value Functions For Scaling Up Active Perception [60.81276437097671]
In active perception tasks, agent aims to select sensory actions that reduce uncertainty about one or more hidden variables.
Partially observable Markov decision processes (POMDPs) provide a natural model for such problems.
As the number of sensors available to the agent grows, the computational cost of POMDP planning grows exponentially.
arXiv Detail & Related papers (2020-09-21T09:11:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.