Partition function estimation with a quantum coin toss
- URL: http://arxiv.org/abs/2411.17816v1
- Date: Tue, 26 Nov 2024 19:01:19 GMT
- Title: Partition function estimation with a quantum coin toss
- Authors: Thais de Lima Silva, Lucas Borges, Leandro Aolita,
- Abstract summary: Estimating quantum partition functions is a critical task in a variety of fields.
This paper introduces a quantum algorithm for estimating the partition function $Z_beta$ of a generic Hamiltonian $H$ up to multiplicative error.
- Score: 0.0
- License:
- Abstract: Estimating quantum partition functions is a critical task in a variety of fields. However, the problem is classically intractable in general due to the exponential scaling of the Hamiltonian dimension $N$ in the number of particles. This paper introduces a quantum algorithm for estimating the partition function $Z_\beta$ of a generic Hamiltonian $H$ up to multiplicative error based on a quantum coin toss. The coin is defined by the probability of applying the quantum imaginary-time evolution propagator $f_\beta[H]=e^{-\beta H/{2}}$ at inverse temperature $\beta$ to the maximally mixed state, realized by a block-encoding of $f_\beta[H]$ into a unitary quantum circuit followed by a post-selection measurement. Our algorithm does not use costly subroutines such as quantum phase estimation or amplitude amplification; and the binary nature of the coin allows us to invoke tools from Bernoulli-process analysis to prove a runtime scaling as $\mathcal{O}(N/{Z_\beta})$, quadratically better than previous general-purpose algorithms using similar quantum resources. Moreover, since the coin is defined by a single observable, the method lends itself well to quantum error mitigation. We test this in practice with a proof-of-concept 9-qubit experiment, where we successfully mitigate errors through a simple noise-extrapolation procedure. Our findings offer an interesting alternative for quantum partition function estimation relevant to early-fault quantum hardware.
Related papers
- Optimizing random local Hamiltonians by dissipation [44.99833362998488]
We prove that a simplified quantum Gibbs sampling algorithm achieves a $Omega(frac1k)$-fraction approximation of the optimum.
Our results suggest that finding low-energy states for sparsified (quasi)local spin and fermionic models is quantumly easy but classically nontrivial.
arXiv Detail & Related papers (2024-11-04T20:21:16Z) - Calculating response functions of coupled oscillators using quantum phase estimation [40.31060267062305]
We study the problem of estimating frequency response functions of systems of coupled, classical harmonic oscillators using a quantum computer.
Our proposed quantum algorithm operates in the standard $s-sparse, oracle-based query access model.
We show that a simple adaptation of our algorithm solves the random glued-trees problem in time.
arXiv Detail & Related papers (2024-05-14T15:28:37Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - Approximation Algorithms for Quantum Max-$d$-Cut [42.248442410060946]
The Quantum Max-$d$-Cut problem involves finding a quantum state that maximizes the expected energy associated with the projector onto the antisymmetric subspace of two, $d$-dimensional qudits over all local interactions.
We develop an algorithm that finds product-state solutions of mixed states with bounded purity that achieve non-trivial performance guarantees.
arXiv Detail & Related papers (2023-09-19T22:53:17Z) - Variational method for learning Quantum Channels via Stinespring
Dilation on neutral atom systems [0.0]
Quantum systems interact with their environment, resulting in non-reversible evolutions.
For many quantum experiments, the time until which measurements can be done might be limited.
We introduce a method to approximate a given target quantum channel by means of variationally approximating equivalent unitaries on an extended system.
arXiv Detail & Related papers (2023-09-19T13:06:44Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Quantum algorithms for estimating quantum entropies [6.211541620389987]
We propose quantum algorithms to estimate the von Neumann and quantum $alpha$-R'enyi entropies of an fundamental quantum state.
We also show how to efficiently construct the quantum entropy circuits for quantum entropy estimation using single copies of the input state.
arXiv Detail & Related papers (2022-03-04T15:44:24Z) - Estimating Gibbs partition function with quantumClifford sampling [6.656454497798153]
We develop a hybrid quantum-classical algorithm to estimate the partition function.
Our algorithm requires only a shallow $mathcalO(1)$-depth quantum circuit.
Shallow-depth quantum circuits are considered vitally important for currently available NISQ (Noisy Intermediate-Scale Quantum) devices.
arXiv Detail & Related papers (2021-09-22T02:03:35Z) - Heisenberg-limited quantum phase estimation of multiple eigenvalues with
few control qubits [1.6328866317851185]
We show that single-control qubit variants of quantum phase estimation can achieve the Heisenberg limit, em also when one is unable to prepare eigenstates of the system.
We present numerical evidence that using the matrix pencil technique the algorithm can achieve Heisenberg-limited scaling as well.
arXiv Detail & Related papers (2021-07-09T18:00:10Z) - Calculation of generating function in many-body systems with quantum
computers: technical challenges and use in hybrid quantum-classical methods [0.0]
The generating function of a Hamiltonian $H$ is defined as $F(t)=langle e-itHrangle$, where $t$ is the time and where the expectation value is taken on a given initial quantum state.
We show how the information content of this function can be used a posteriori on classical computers to solve quantum many-body problems.
arXiv Detail & Related papers (2021-04-16T15:44:27Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.