論文の概要: "Give me the code" -- Log Analysis of First-Year CS Students' Interactions With GPT
- arxiv url: http://arxiv.org/abs/2411.17855v2
- Date: Sun, 01 Dec 2024 19:02:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-03 13:36:08.313401
- Title: "Give me the code" -- Log Analysis of First-Year CS Students' Interactions With GPT
- Title(参考訳): 「コードを渡せ」-CS学生のGPTとのインタラクションのログ分析
- Authors: Pedro Alves, Bruno Pereira Cipriano,
- Abstract要約: 本稿では,69人の新入生がプロジェクト課題の中で特定のプログラミング問題を解くために用いたプロンプトを解析する。
本研究は,未解決のプロンプト技術を用いているにもかかわらず,ほとんどの学生がGPTをうまく活用できたことを示唆している。
学生の半数は、複数のGPT生成ソリューションから選択する際の判断を訓練する能力を示した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The impact of Large Language Models (LLMs) like GPT-3, GPT-4, and Bard in computer science (CS) education is expected to be profound. Students now have the power to generate code solutions for a wide array of programming assignments. For first-year students, this may be particularly problematic since the foundational skills are still in development and an over-reliance on generative AI tools can hinder their ability to grasp essential programming concepts. This paper analyzes the prompts used by 69 freshmen undergraduate students to solve a certain programming problem within a project assignment, without giving them prior prompt training. We also present the rules of the exercise that motivated the prompts, designed to foster critical thinking skills during the interaction. Despite using unsophisticated prompting techniques, our findings suggest that the majority of students successfully leveraged GPT, incorporating the suggested solutions into their projects. Additionally, half of the students demonstrated the ability to exercise judgment in selecting from multiple GPT-generated solutions, showcasing the development of their critical thinking skills in evaluating AI-generated code.
- Abstract(参考訳): GPT-3、GPT-4、Bardのような大規模言語モデル(LLM)がコンピュータサイエンス(CS)教育に与える影響は深刻なものと思われる。
学生は現在、幅広いプログラミング課題のためのコードソリューションを生成する能力を持っています。
1年生にとっては、基礎技術はまだ開発中であり、生成型AIツールへの依存が、本質的なプログラミング概念を理解する能力を妨げているため、これは特に問題となるかもしれない。
本稿では,69人の新入生がプロジェクト課題において,事前のプロンプトトレーニングを行なわずに,特定のプログラミング問題を解くために使用するプロンプトを解析する。
また,対話における批判的思考スキルの育成を目的として,課題を動機づけるエクササイズのルールも提示する。
本研究は,未解決のプロンプト技術を用いているにもかかわらず,ほとんどの学生がGPTの活用に成功し,提案したソリューションをプロジェクトに取り込むことが示唆された。
さらに、学生の半数は、複数のGPT生成ソリューションから判断を行う能力を示し、AI生成コードの評価における批判的思考スキルの発達を示した。
関連論文リスト
- Evaluating Contextually Personalized Programming Exercises Created with Generative AI [4.046163999707179]
本報告では,GPT-4で作成した文脈別にパーソナライズされたプログラミング演習を含む,選択型プログラミングコースにおけるユーザスタディについて報告する。
その結果, GPT-4で発生する運動の質は概して高かった。
これは、AIが生成するプログラミング問題は、入門プログラミングコースに付加価値があることを示している。
論文 参考訳(メタデータ) (2024-06-11T12:59:52Z) - "ChatGPT Is Here to Help, Not to Replace Anybody" -- An Evaluation of Students' Opinions On Integrating ChatGPT In CS Courses [0.0]
GPTやBardのような大規模言語モデル(LLM)は、テキスト記述に基づいてコードを生成することができる。
LLMは、コンピュータ教育に深く影響し、不正行為や過度な依存、計算思考スキルの低下への懸念を高めます。
論文 参考訳(メタデータ) (2024-04-26T14:29:16Z) - Improving the Validity of Automatically Generated Feedback via
Reinforcement Learning [50.067342343957876]
強化学習(RL)を用いた正当性と整合性の両方を最適化するフィードバック生成フレームワークを提案する。
具体的には、直接選好最適化(DPO)によるトレーニングのための拡張データセットにおいて、GPT-4のアノテーションを使用してフィードバックペアよりも好みを生成する。
論文 参考訳(メタデータ) (2024-03-02T20:25:50Z) - Students' Perspective on AI Code Completion: Benefits and Challenges [2.936007114555107]
学生の視点から,AIコード補完のメリット,課題,期待について検討した。
その結果,AIコード補完は,正しい構文提案を提供することで,学生の生産性と効率を向上させることがわかった。
将来的には、AIコード補完は説明可能であり、教育プロセスを強化するための最高のコーディングプラクティスを提供するべきである。
論文 参考訳(メタデータ) (2023-10-31T22:41:16Z) - Exploring the Potential of Large Language Models to Generate Formative
Programming Feedback [0.5371337604556311]
計算機教育者や学習者のための大規模言語モデル(LLM)の可能性を探る。
これらの目的を達成するために、我々はChatGPTの入力としてCS1コース内で収集されたデータセットから学生のプログラミングシーケンスを使用した。
その結果,ChatGPTはプログラミングの入門タスクや学生の誤りに対して合理的に機能することがわかった。
しかし、教育者は、初心者向けの誤解を招く情報を含むことができるため、提供されたフィードバックの使い方に関するガイダンスを提供する必要がある。
論文 参考訳(メタデータ) (2023-08-31T15:22:11Z) - UKP-SQuARE: An Interactive Tool for Teaching Question Answering [61.93372227117229]
質問応答の指数的増加(QA)は、あらゆる自然言語処理(NLP)コースにおいて必須のトピックとなっている。
本稿では、QA教育のプラットフォームとしてUKP-SQuAREを紹介する。
学生は様々な視点から様々なQAモデルを実行、比較、分析することができる。
論文 参考訳(メタデータ) (2023-05-31T11:29:04Z) - Exploring the Use of ChatGPT as a Tool for Learning and Assessment in
Undergraduate Computer Science Curriculum: Opportunities and Challenges [0.3553493344868413]
本稿では,ChatGPTを大学コンピュータサイエンスカリキュラムの学習・評価ツールとして活用する上での課題と課題について論じる。
グループBの学生はChatGPTにアクセスでき、プログラミングの課題を解決するために使うことを奨励された。
結果より,ChatGPTを用いた学生は成績の点で有利であったが,提出されたコードには矛盾や不正確性があった。
論文 参考訳(メタデータ) (2023-04-16T21:04:52Z) - JiuZhang: A Chinese Pre-trained Language Model for Mathematical Problem
Understanding [74.12405417718054]
本稿では,中国初の数学的事前学習言語モデル(PLM)を提示することにより,機械の数学的知性向上を目指す。
他の標準のNLPタスクとは異なり、数学的テキストは問題文に数学的用語、記号、公式を含むため理解が難しい。
基礎課程と上級課程の両方からなる数学PLMの学習を改善するための新しいカリキュラム事前学習手法を設計する。
論文 参考訳(メタデータ) (2022-06-13T17:03:52Z) - Competition-Level Code Generation with AlphaCode [74.87216298566942]
より深い推論を必要とする問題に対する新しいソリューションを作成することができるコード生成システムであるAlphaCodeを紹介する。
Codeforcesプラットフォームにおける最近のプログラミングコンペティションのシミュレーション評価において、AlphaCodeは平均54.3%のランキングを達成した。
論文 参考訳(メタデータ) (2022-02-08T23:16:31Z) - ProtoTransformer: A Meta-Learning Approach to Providing Student Feedback [54.142719510638614]
本稿では,フィードバックを数発の分類として提供するという課題について考察する。
メタラーナーは、インストラクターによるいくつかの例から、新しいプログラミング質問に関する学生のコードにフィードバックを与えるように適応します。
本手法は,第1段階の大学が提供したプログラムコースにおいて,16,000名の学生試験ソリューションに対するフィードバックの提供に成功している。
論文 参考訳(メタデータ) (2021-07-23T22:41:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。