論文の概要: "ChatGPT Is Here to Help, Not to Replace Anybody" -- An Evaluation of Students' Opinions On Integrating ChatGPT In CS Courses
- arxiv url: http://arxiv.org/abs/2404.17443v1
- Date: Fri, 26 Apr 2024 14:29:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-29 12:55:05.111040
- Title: "ChatGPT Is Here to Help, Not to Replace Anybody" -- An Evaluation of Students' Opinions On Integrating ChatGPT In CS Courses
- Title(参考訳): ChatGPTは、誰にでも取って代わるのではなく助ける」-CSコースにおけるChatGPTの統合に対する学生の意見の評価
- Authors: Bruno Pereira Cipriano, Pedro Alves,
- Abstract要約: GPTやBardのような大規模言語モデル(LLM)は、テキスト記述に基づいてコードを生成することができる。
LLMは、コンピュータ教育に深く影響し、不正行為や過度な依存、計算思考スキルの低下への懸念を高めます。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) like GPT and Bard are capable of producing code based on textual descriptions, with remarkable efficacy. Such technology will have profound implications for computing education, raising concerns about cheating, excessive dependence, and a decline in computational thinking skills, among others. There has been extensive research on how teachers should handle this challenge but it is also important to understand how students feel about this paradigm shift. In this research, 52 first-year CS students were surveyed in order to assess their views on technologies with code-generation capabilities, both from academic and professional perspectives. Our findings indicate that while students generally favor the academic use of GPT, they don't over rely on it, only mildly asking for its help. Although most students benefit from GPT, some struggle to use it effectively, urging the need for specific GPT training. Opinions on GPT's impact on their professional lives vary, but there is a consensus on its importance in academic practice.
- Abstract(参考訳): GPTやBardのような大規模言語モデル(LLM)は、テキスト記述に基づいたコードを生成することができる。
このような技術は、コンピュータ教育に深く影響し、不正行為や過度な依存、計算思考能力の低下などへの懸念を高めます。
教師がこの課題にどう対処すべきかについて、幅広い研究がなされてきたが、学生がこのパラダイムシフトに対してどのように感じているかを理解することも重要である。
本研究は,52人のCS学生を対象に,学術的・専門的な視点から,コード生成能力を有する技術に対する視点を評価するために調査を行った。
以上の結果から,学生はGPTの学術的利用を好んではいるものの,その支援を軽度に求めているに過ぎないことが示唆された。
ほとんどの学生はGPTの恩恵を受けているが、特定のGPTトレーニングの必要性を訴える学生もいる。
GPTの職業的生活への影響に対する意見は異なるが、学術的実践におけるその重要性には意見の一致がある。
関連論文リスト
- "Give me the code" -- Log Analysis of First-Year CS Students' Interactions With GPT [0.0]
本稿では,69人の新入生がプロジェクト課題の中で特定のプログラミング問題を解くために用いたプロンプトを解析する。
本研究は,未解決のプロンプト技術を用いているにもかかわらず,ほとんどの学生がGPTをうまく活用できたことを示唆している。
学生の半数は、複数のGPT生成ソリューションから選択する際の判断を訓練する能力を示した。
論文 参考訳(メタデータ) (2024-11-26T20:11:46Z) - Evaluating GPT-4 at Grading Handwritten Solutions in Math Exams [48.99818550820575]
我々は、最先端のマルチモーダルAIモデル、特にGPT-4oを利用して、大学レベルの数学試験に対する手書きの応答を自動的に評価する。
確率論試験における質問に対する実際の学生の反応を用いて, GPT-4oのスコアと, 様々なプロンプト技術を用いて, 人間の学級のスコアとの整合性を評価する。
論文 参考訳(メタデータ) (2024-11-07T22:51:47Z) - GPT-4 as a Homework Tutor can Improve Student Engagement and Learning Outcomes [80.60912258178045]
我々は,中学生が第二言語として英語を学習するための対話型宿題セッションを,GPT-4で実施できるプロンプト戦略を開発した。
従来の宿題を GPT-4 の宿題に置き換え,4つの高校生の授業でランダム化比較試験(RCT)を行った。
学習結果の大幅な改善,特に文法の増大,学生のエンゲージメントについて検討した。
論文 参考訳(メタデータ) (2024-09-24T11:22:55Z) - Could ChatGPT get an Engineering Degree? Evaluating Higher Education Vulnerability to AI Assistants [176.39275404745098]
我々は,2つのAIアシスタントであるGPT-3.5とGPT-4が適切な回答を得られるかどうかを評価する。
GPT-4は65.8%の質問を正解し、85.1%の質問に対して少なくとも1つの手順で正しい答えを出すことができる。
この結果から,AIの進歩を踏まえて,高等教育におけるプログラムレベルの評価設計の見直しが求められた。
論文 参考訳(メタデータ) (2024-08-07T12:11:49Z) - Integrating ChatGPT in a Computer Science Course: Students Perceptions
and Suggestions [0.0]
本経験報告では,ChatGPTをコンピュータサイエンス科目に統合するための学生の認識と提案について考察する。
計算機科学科目では,ChatGPTを用いて慎重にバランスをとることが重要である。
論文 参考訳(メタデータ) (2023-12-22T10:48:34Z) - Can ChatGPT Play the Role of a Teaching Assistant in an Introductory
Programming Course? [1.8197265299982013]
本稿では,LLM である ChatGPT をプログラミング入門コースで仮想指導アシスタント (TA) として活用する可能性について検討する。
本研究は,ChatGPTの性能をヒトTAの機能と比較することにより評価する。
論文 参考訳(メタデータ) (2023-12-12T15:06:44Z) - "It's not like Jarvis, but it's pretty close!" -- Examining ChatGPT's
Usage among Undergraduate Students in Computer Science [3.6936132187945923]
ChatGPTやGoogle Bardのような大規模言語モデル(LLM)は、学術界で大きな注目を集めている。
本研究は,大学院コンピュータサイエンスの学生がChatGPTをどのように利用するのかを包括的に理解するための,学生第一のアプローチを採用する。
論文 参考訳(メタデータ) (2023-11-16T08:10:18Z) - Transformative Effects of ChatGPT on Modern Education: Emerging Era of
AI Chatbots [36.760677949631514]
ChatGPTは、大量のデータの分析に基づいて、一貫性と有用な応答を提供するためにリリースされた。
予備評価の結果,ChatGPTは財務,コーディング,数学など各分野において異なる性能を示した。
不正確なデータや偽データを生成する可能性など、その使用には明らかな欠点がある。
ChatGPTを教育のツールとして使用すれば、学術的規制と評価のプラクティスを更新する必要がある。
論文 参考訳(メタデータ) (2023-05-25T17:35:57Z) - Exploring User Perspectives on ChatGPT: Applications, Perceptions, and
Implications for AI-Integrated Education [40.38809129759498]
ChatGPTは、高等教育、K-12教育、実践的スキルトレーニングの領域でよく使われている。
一方で、学生の自己効力感と学習意欲を増幅できる変革的ツールであると考えるユーザもいる。
一方,利用者の理解度は高い。
論文 参考訳(メタデータ) (2023-05-22T15:13:14Z) - A Categorical Archive of ChatGPT Failures [47.64219291655723]
OpenAIが開発したChatGPTは、大量のデータを使って訓練され、人間の会話をシミュレートしている。
それは、広範囲の人間の問い合わせに効果的に答える能力のために、大きな注目を集めている。
しかし、ChatGPTの失敗の包括的分析は欠落しており、これが本研究の焦点となっている。
論文 参考訳(メタデータ) (2023-02-06T04:21:59Z) - ProtoTransformer: A Meta-Learning Approach to Providing Student Feedback [54.142719510638614]
本稿では,フィードバックを数発の分類として提供するという課題について考察する。
メタラーナーは、インストラクターによるいくつかの例から、新しいプログラミング質問に関する学生のコードにフィードバックを与えるように適応します。
本手法は,第1段階の大学が提供したプログラムコースにおいて,16,000名の学生試験ソリューションに対するフィードバックの提供に成功している。
論文 参考訳(メタデータ) (2021-07-23T22:41:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。