Accelerating Proximal Policy Optimization Learning Using Task Prediction for Solving Environments with Delayed Rewards
- URL: http://arxiv.org/abs/2411.17861v3
- Date: Thu, 05 Dec 2024 02:30:43 GMT
- Title: Accelerating Proximal Policy Optimization Learning Using Task Prediction for Solving Environments with Delayed Rewards
- Authors: Ahmad Ahmad, Mehdi Kermanshah, Kevin Leahy, Zachary Serlin, Ho Chit Siu, Makai Mann, Cristian-Ioan Vasile, Roberto Tron, Calin Belta,
- Abstract summary: We introduce two key enhancements to PPO: a hybrid policy architecture that combines an offline policy with an online PPO policy, and a reward shaping mechanism using Time Window Temporal Logic (TWTL)
We demonstrate the effectiveness of our approach through extensive experiments on an inverted pendulum and a lunar lander environments.
- Score: 8.455772877963792
- License:
- Abstract: In this paper, we tackle the challenging problem of delayed rewards in reinforcement learning (RL). While Proximal Policy Optimization (PPO) has emerged as a leading Policy Gradient method, its performance can degrade under delayed rewards. We introduce two key enhancements to PPO: a hybrid policy architecture that combines an offline policy (trained on expert demonstrations) with an online PPO policy, and a reward shaping mechanism using Time Window Temporal Logic (TWTL). The hybrid architecture leverages offline data throughout training while maintaining PPO's theoretical guarantees. Building on the monotonic improvement framework of Trust Region Policy Optimization (TRPO), we prove that our approach ensures improvement over both the offline policy and previous iterations, with a bounded performance gap of $(2\varsigma\gamma\alpha^2)/(1-\gamma)^2$, where $\alpha$ is the mixing parameter, $\gamma$ is the discount factor, and $\varsigma$ bounds the expected advantage. Additionally, we prove that our TWTL-based reward shaping preserves the optimal policy of the original problem. TWTL enables formal translation of temporal objectives into immediate feedback signals that guide learning. We demonstrate the effectiveness of our approach through extensive experiments on an inverted pendulum and a lunar lander environments, showing improvements in both learning speed and final performance compared to standard PPO and offline-only approaches.
Related papers
- REBEL: Reinforcement Learning via Regressing Relative Rewards [59.68420022466047]
We propose REBEL, a minimalist RL algorithm for the era of generative models.
In theory, we prove that fundamental RL algorithms like Natural Policy Gradient can be seen as variants of REBEL.
We find that REBEL provides a unified approach to language modeling and image generation with stronger or similar performance as PPO and DPO.
arXiv Detail & Related papers (2024-04-25T17:20:45Z) - Clipped-Objective Policy Gradients for Pessimistic Policy Optimization [3.2996723916635275]
Policy gradient methods seek to produce monotonic improvement through bounded changes in policy outputs.
In this work, we find that the performance of PPO, when applied to continuous action spaces, may be consistently improved through a simple change in objective.
We show that the clipped-objective policy gradient (COPG) objective is on average "pessimistic" compared to both the PPO objective and (2) this pessimism promotes enhanced exploration.
arXiv Detail & Related papers (2023-11-10T03:02:49Z) - Proximal Point Imitation Learning [48.50107891696562]
We develop new algorithms with rigorous efficiency guarantees for infinite horizon imitation learning.
We leverage classical tools from optimization, in particular, the proximal-point method (PPM) and dual smoothing.
We achieve convincing empirical performance for both linear and neural network function approximation.
arXiv Detail & Related papers (2022-09-22T12:40:21Z) - Optimistic Policy Optimization is Provably Efficient in Non-stationary MDPs [113.8752163061151]
We study episodic reinforcement learning (RL) in non-stationary linear kernel Markov decision processes (MDPs)
We propose the underlineperiodically underlinerestarted underlineoptimistic underlinepolicy underlineoptimization algorithm (PROPO)
PROPO features two mechanisms: sliding-window-based policy evaluation and periodic-restart-based policy improvement.
arXiv Detail & Related papers (2021-10-18T02:33:20Z) - Near Optimal Policy Optimization via REPS [33.992374484681704]
emphrelative entropy policy search (REPS) has demonstrated successful policy learning on a number of simulated and real-world robotic domains.
There exist no guarantees on REPS's performance when using gradient-based solvers.
We introduce a technique that uses emphgenerative access to the underlying decision process to compute parameter updates that maintain favorable convergence to the optimal regularized policy.
arXiv Detail & Related papers (2021-03-17T16:22:59Z) - Proximal Policy Optimization Smoothed Algorithm [0.0]
We present a PPO variant, named Proximal Policy Optimization Smooth Algorithm (PPOS)
Its critical improvement is the use of a functional clipping method instead of a flat clipping method.
We show that it outperforms the latest PPO variants on both performance and stability in challenging continuous control tasks.
arXiv Detail & Related papers (2020-12-04T07:43:50Z) - CRPO: A New Approach for Safe Reinforcement Learning with Convergence
Guarantee [61.176159046544946]
In safe reinforcement learning (SRL) problems, an agent explores the environment to maximize an expected total reward and avoids violation of certain constraints.
This is the first-time analysis of SRL algorithms with global optimal policies.
arXiv Detail & Related papers (2020-11-11T16:05:14Z) - Projection-Based Constrained Policy Optimization [34.555500347840805]
We propose a new algorithm, Projection-Based Constrained Policy Optimization (PCPO)
PCPO achieves more than 3.5 times less constraint violation and around 15% higher reward compared to state-of-the-art methods.
arXiv Detail & Related papers (2020-10-07T04:22:45Z) - Non-Stationary Off-Policy Optimization [50.41335279896062]
We study the novel problem of off-policy optimization in piecewise-stationary contextual bandits.
In the offline learning phase, we partition logged data into categorical latent states and learn a near-optimal sub-policy for each state.
In the online deployment phase, we adaptively switch between the learned sub-policies based on their performance.
arXiv Detail & Related papers (2020-06-15T09:16:09Z) - Provably Efficient Exploration in Policy Optimization [117.09887790160406]
This paper proposes an Optimistic variant of the Proximal Policy Optimization algorithm (OPPO)
OPPO achieves $tildeO(sqrtd2 H3 T )$ regret.
To the best of our knowledge, OPPO is the first provably efficient policy optimization algorithm that explores.
arXiv Detail & Related papers (2019-12-12T08:40:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.