論文の概要: Combining Threat Intelligence with IoT Scanning to Predict Cyber Attack
- arxiv url: http://arxiv.org/abs/2411.17931v3
- Date: Mon, 07 Apr 2025 06:33:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 16:00:10.315417
- Title: Combining Threat Intelligence with IoT Scanning to Predict Cyber Attack
- Title(参考訳): 脅威インテリジェンスとIoTスキャンを組み合わせてサイバー攻撃を予測する
- Authors: Jubin Abhishek Soni,
- Abstract要約: ハッカーやハックティビストグループを含む悪意ある俳優は、しばしば「ダークウェブ」を通じてイデオロギー的コンテンツを広め、活動を調整する。
本稿では,ダークウェブデータを体系的に収集,解析,可視化するために設計された,新たな予測脅威インテリジェンスフレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: While the Web has become a global platform for communication; malicious actors, including hackers and hacktivist groups, often disseminate ideological content and coordinate activities through the "Dark Web" an obscure counterpart of the conventional web. Presently, challenges such as information overload and the fragmented nature of cyber threat data impede comprehensive profiling of these actors, thereby limiting the efficacy of predictive analyses of their online activities. Concurrently, the proliferation of internet-connected devices has surpassed the global human population, with this disparity projected to widen as the Internet of Things (IoT) expands. Technical communities are actively advancing IoT-related research to address its growing societal integration. This paper proposes a novel predictive threat intelligence framework designed to systematically collect, analyze, and visualize Dark Web data to identify malicious websites and correlate this information with potential IoT vulnerabilities. The methodology integrates automated data harvesting, analytical techniques, and visual mapping tools, while also examining vulnerabilities in IoT devices to assess exploitability. By bridging gaps in cybersecurity research, this study aims to enhance predictive threat modeling and inform policy development, thereby contributing to intelligence research initiatives focused on mitigating cyber risks in an increasingly interconnected digital ecosystem.
- Abstract(参考訳): ウェブはコミュニケーションのグローバルなプラットフォームになりつつあるが、ハッカーやハクティビストグループを含む悪意あるアクターは、しばしば「ダークウェブ」を通じてイデオロギー的コンテンツを広め、活動を調整する。
現在、情報過負荷やサイバー脅威データの断片化といった課題は、これらのアクターの包括的なプロファイリングを妨げるため、オンライン活動の予測分析の有効性を制限している。
同時に、IoT(Internet of Things)が拡大するにつれて、インターネットに接続されたデバイスの普及が世界人口を上回っ、この格差が拡大すると予想されている。
技術的コミュニティは、その成長する社会的統合に対処するために、IoT関連の研究を積極的に進めている。
本稿では,悪意のあるWebサイトを識別し,その情報を潜在的なIoT脆弱性と相関付けるために,ダークウェブデータを体系的に収集,解析,視覚化するために設計された,新たな予測脅威知能フレームワークを提案する。
この方法論は、自動データ収集、分析技術、ビジュアルマッピングツールを統合し、IoTデバイスの脆弱性を調べて、エクスプロイラビリティを評価する。
本研究は,サイバーセキュリティ研究のギャップを埋めることにより,予測脅威モデリングの強化と政策開発への情報提供を目標とし,ますます相互接続するデジタルエコシステムにおけるサイバーリスクの軽減を目的とした情報研究活動に寄与する。
関連論文リスト
- Integrating Graph Theoretical Approaches in Cybersecurity Education CSCI-RTED [0.0]
グラフ理論は、サイバーエコシステム内の関係をモデル化するための強力なフレームワークを提供する。
本稿では,グラフ理論の概念を取り入れたNSL-KDDデータセットの充実版を開発し,その実用的価値を高める。
論文 参考訳(メタデータ) (2025-04-23T19:08:30Z) - Real AI Agents with Fake Memories: Fatal Context Manipulation Attacks on Web3 Agents [36.49717045080722]
本稿では,ブロックチェーンベースの金融エコシステムにおけるAIエージェントの脆弱性を,現実のシナリオにおける敵対的脅威に曝露した場合に検討する。
我々は、保護されていないコンテキスト表面を利用する包括的攻撃ベクトルであるコンテキスト操作の概念を導入する。
これらの脆弱性を定量化するために、コンテキスト操作攻撃に対するAIエージェントの堅牢性を評価するWeb3ドメイン固有のベンチマークであるCrAIBenchを設計する。
論文 参考訳(メタデータ) (2025-03-20T15:44:31Z) - Cyber Defense Reinvented: Large Language Models as Threat Intelligence Copilots [36.809323735351825]
CYLENSは、大規模言語モデル(LLM)を利用したサイバー脅威情報通信システムである。
CYLENSは、脅威管理ライフサイクル全体を通じてセキュリティ専門家を支援するように設計されている。
脅威帰属、文脈化、検出、相関、優先順位付け、修復をサポートする。
論文 参考訳(メタデータ) (2025-02-28T07:16:09Z) - Modern DDoS Threats and Countermeasures: Insights into Emerging Attacks and Detection Strategies [49.57278643040602]
分散型サービス拒否(DDoS)攻撃は、オンラインサービスとインフラストラクチャに対する重大な脅威として継続する。
本稿は、過去10年間のDDoS攻撃と検出戦略の包括的調査を提供する。
論文 参考訳(メタデータ) (2025-02-27T11:22:25Z) - Federated Learning-Driven Cybersecurity Framework for IoT Networks with Privacy-Preserving and Real-Time Threat Detection Capabilities [0.0]
従来の集中型セキュリティ手法は、IoTネットワークにおけるプライバシ保護とリアルタイム脅威検出のバランスをとるのに苦労することが多い。
本研究では,IoT環境に特化したフェデレート学習駆動型サイバーセキュリティフレームワークを提案する。
局所的に訓練されたモデルのセキュアアグリゲーションは、同型暗号を用いて達成され、機密情報を漏らさずに協調学習が可能である。
論文 参考訳(メタデータ) (2025-02-14T23:11:51Z) - A Review of the Duality of Adversarial Learning in Network Intrusion: Attacks and Countermeasures [0.0]
敵対的攻撃、特にディープラーニングモデルの脆弱性を狙った攻撃は、サイバーセキュリティに対するニュアンスで重大な脅威となる。
本研究は,データポジショニング,テストタイムエベイション,リバースエンジニアリングなど,敵対的な学習の脅威について論じる。
我々の研究は、敵の攻撃によって引き起こされるネットワークセキュリティとプライバシの潜在的な侵害に対処するための防御メカニズムを強化するための基盤となる。
論文 参考訳(メタデータ) (2024-12-18T14:21:46Z) - Countering Autonomous Cyber Threats [40.00865970939829]
ファンデーションモデルは、サイバードメイン内で広く、特に二元的関心事を提示します。
近年の研究では、これらの先進的なモデルが攻撃的なサイバースペース操作を通知または独立に実行する可能性を示している。
この研究は、孤立したネットワークでマシンを妥協する能力について、最先端のいくつかのFMを評価し、そのようなAIによる攻撃を倒す防御メカニズムを調査する。
論文 参考訳(メタデータ) (2024-10-23T22:46:44Z) - Machine Learning-Assisted Intrusion Detection for Enhancing Internet of Things Security [1.2369895513397127]
IoT(Internet of Things)に対する攻撃は、デバイス、アプリケーション、インタラクションのネットワーク化と統合化が進むにつれて増加している。
IoTデバイスを効率的にセキュアにするためには、侵入システムのリアルタイム検出が重要である。
本稿では、IoTセキュリティのための機械学習ベースの侵入検知戦略に関する最新の研究について検討する。
論文 参考訳(メタデータ) (2024-10-01T19:24:34Z) - The Shadow of Fraud: The Emerging Danger of AI-powered Social Engineering and its Possible Cure [30.431292911543103]
社会工学(SE)攻撃は個人と組織双方にとって重大な脅威である。
人工知能(AI)の進歩は、よりパーソナライズされ説得力のある攻撃を可能にすることによって、これらの脅威を強化する可能性がある。
本研究は、SE攻撃機構を分類し、その進化を分析し、これらの脅威を測定する方法を探る。
論文 参考訳(メタデータ) (2024-07-22T17:37:31Z) - Critical Analysis and Countermeasures Tactics, Techniques and Procedures (TTPs) that targeting civilians: A case study On Pegasus [0.0]
本稿では,ペガサスウイルスによるジャーナリストや活動家の標的について検討する。
サイバーセキュリティポリシーに対するこれらの攻撃による遠い影響を検査する。
企業がサイバー攻撃の危険性を減らすために使う、最も重要な戦術をいくつか説明します。
論文 参考訳(メタデータ) (2023-10-01T19:28:03Z) - Machine Learning for Detection and Mitigation of Web Vulnerabilities and
Web Attacks [0.0]
クロスサイトスクリプティング(XSS)とクロスサイトリクエストフォージェリ(CSRF)は、Webセキュリティの分野で大きな関心事となっている。
これらのWeb脆弱性を検出するパフォーマンスを改善するために、いくつかのアイデアが提案されている。
機械学習技術は最近、XSSやCSRFに対抗するために研究者によって使用されている。
論文 参考訳(メタデータ) (2023-04-27T18:27:26Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
マルウェア、スパム、侵入などのサイバー攻撃の爆発的な増加は、社会に深刻な影響をもたらした。
従来の機械学習(ML)ベースの手法は、サイバー脅威の検出に広く用いられているが、現実のサイバーエンティティ間の相関をモデル化することはほとんどない。
グラフマイニング技術の普及に伴い、サイバーエンティティ間の相関を捉え、高いパフォーマンスを達成するために、多くの研究者がこれらの手法を調査した。
論文 参考訳(メタデータ) (2023-04-02T08:43:03Z) - Deep Learning Algorithm for Threat Detection in Hackers Forum (Deep Web) [0.0]
深層学習アルゴリズムLong Short-Term Memory (LSTM) を用いたサイバー脅威検出のための新しい手法を提案する。
当社のモデルは,サイバー攻撃前に,デジタル通信の確保や脆弱性の発見において,組織によって容易に展開できる。
論文 参考訳(メタデータ) (2022-02-03T07:49:44Z) - A Crawler Architecture for Harvesting the Clear, Social, and Dark Web
for IoT-Related Cyber-Threat Intelligence [1.1661238776379117]
クリアでソーシャルでダークなWebは最近、貴重なサイバーセキュリティ情報の豊富な情報源として特定されている。
我々は、クリアウェブのセキュリティウェブサイト、ソーシャルウェブのセキュリティフォーラム、ダークウェブのハッカーフォーラム/マーケットプレースからデータを透過的に収集する新しいクローリングアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-09-14T19:26:08Z) - Social Media Monitoring for IoT Cyber-Threats [0.3249853429482705]
ソーシャルメディアの監視とTwitterストリームからのリアルタイムサイバー脅威インテリジェンス検出に焦点をあてる。
我々は,IoTドメインに適したソーシャルメディア監視システムを提案する。
論文 参考訳(メタデータ) (2021-09-09T14:32:24Z) - Artificial Neural Network for Cybersecurity: A Comprehensive Review [0.0]
本稿では,Deep Learning(DL)アプローチのサイバーセキュリティへの適用について,体系的なレビューを行う。
現在普及しているIoTおよび他のネットワークにおけるサイバー攻撃について、そしてこれらの攻撃を管理するためのDLメソッドの有効性について議論する。
最後に、信頼性と実践可能なIoT駆動型医療システムにおけるサイバーセキュリティの重要性について論じる。
論文 参考訳(メタデータ) (2021-06-20T09:32:48Z) - Pervasive AI for IoT Applications: Resource-efficient Distributed
Artificial Intelligence [45.076180487387575]
人工知能(AI)は、さまざまなモノのインターネット(IoT)アプリケーションやサービスにおいて大きなブレークスルーを目の当たりにした。
これは、感覚データへの容易なアクセスと、リアルタイムデータストリームのゼッタバイト(ZB)を生成する広帯域/ユビキタスデバイスの巨大なスケールによって駆動される。
広範コンピューティングと人工知能の合流により、Pervasive AIはユビキタスIoTシステムの役割を拡大した。
論文 参考訳(メタデータ) (2021-05-04T23:42:06Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
本稿では,機械学習技術に基づくセキュリティソリューションに対する敵攻撃に関する最新の研究を要約する。
サイバーセキュリティドメインでエンドツーエンドの敵攻撃を実装するという、ユニークな課題を議論するのは、これが初めてである。
論文 参考訳(メタデータ) (2020-07-05T18:22:40Z) - Timely Detection and Mitigation of Stealthy DDoS Attacks via IoT
Networks [30.68108039722565]
Internet of Things(IoT)デバイスは、妥協される可能性があり、Mongon DDoSと呼ばれる、新たなタイプのステルスなDistributed Denial of Service(DDoS)攻撃の一部である。
本研究は,この出現するDDoS攻撃をタイムリーに検出・緩和できる,新しい異常検出システム(IDS)を提案する。
論文 参考訳(メタデータ) (2020-06-15T00:54:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。