Experimental investigation of coherence contributions to a nonequilibrium thermodynamic process in a driven quantum system
- URL: http://arxiv.org/abs/2411.17952v1
- Date: Wed, 27 Nov 2024 00:24:11 GMT
- Title: Experimental investigation of coherence contributions to a nonequilibrium thermodynamic process in a driven quantum system
- Authors: Krishna Shende, Kavita Dorai, Arvind,
- Abstract summary: entropy produced can be thought of as a combination of coherence generation and a population mismatch.
We experimentally explored this out-of-equilibrium process in an NMR quantum processor.
- Score: 2.9662527746797536
- License:
- Abstract: The work done when a system at thermal equilibrium is externally driven by a unitary control parameter leads to irreversible entropy production. The entropy produced can be thought of as a combination of coherence generation and a population mismatch between the target equilibrium state and the actually achieved final state. We experimentally explored this out-of-equilibrium process in an NMR quantum processor and studied the contribution of coherence to irreversible entropy generation. We verified a generalized Clausius inequality, which affirms that irreversible entropy production is lower-bounded.
Related papers
- Squeezing generation crossing a mean-field critical point: Work statistics, irreversibility and critical fingerprints [44.99833362998488]
In this work, we investigate the critical fingerprints appearing in key thermodynamical quantities for a mean-field critical system.
The presence of a mean-field critical point in a finite-time cycle leads to constant irreversible work even in the limit of infinitely slow driving.
We find that the probability of observing negative work values, corresponding to negative irreversible entropy, is inversely proportional to the time the system remains near to the critical point.
arXiv Detail & Related papers (2025-01-20T19:00:01Z) - Evidence of genuine quantum effects in nonequilibrium entropy production [0.981589350745691]
We experimentally demonstrate the division of entropy production of an open quantum system into a population-related component and a coherence-related component.
Our experiment ultimately proves that irreversibility at the quantum level can be reduced through properly harnessing the two contributions to entropy production.
arXiv Detail & Related papers (2024-02-10T01:41:01Z) - On the role of initial coherence in the spin phase-space entropy
production rate [0.0]
We show that, when considering entropy production generated in a process taking a finite-size bipartite quantum system out of equilibrium through local non-unitary channels, no general monotonicity relationship exists between the entropy production and degree of quantum coherence in the state of the system.
Our results call for a systematic study of the role of genuine quantum features in the non-equilibrium thermodynamics of quantum processes.
arXiv Detail & Related papers (2022-07-12T15:48:12Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - Catalytic Transformations of Pure Entangled States [62.997667081978825]
Entanglement entropy is the von Neumann entropy of quantum entanglement of pure states.
The relation between entanglement entropy and entanglement distillation has been known only for the setting, and the meaning of entanglement entropy in the single-copy regime has so far remained open.
Our results imply that entanglement entropy quantifies the amount of entanglement available in a bipartite pure state to be used for quantum information processing, giving results an operational meaning also in entangled single-copy setup.
arXiv Detail & Related papers (2021-02-22T16:05:01Z) - Lower Bound on Irreversibility in Thermal Relaxation of Open Quantum
Systems [4.111899441919164]
Quantifying the degree of irreversibility by entropy production, we prove that the irreversibility of the thermal relaxation is lower-bounded by a relative entropy between the unitarily-evolved state and the final state.
Our finding refines the second law of thermodynamics and reveals a universal feature of thermal relaxation processes.
arXiv Detail & Related papers (2021-02-15T05:17:11Z) - Entropy production in the quantum walk [62.997667081978825]
We focus on the study of the discrete-time quantum walk on the line, from the entropy production perspective.
We argue that the evolution of the coin can be modeled as an open two-level system that exchanges energy with the lattice at some effective temperature.
arXiv Detail & Related papers (2020-04-09T23:18:29Z) - Out-of-equilibrium quantum thermodynamics in the Bloch sphere:
temperature and internal entropy production [68.8204255655161]
An explicit expression for the temperature of an open two-level quantum system is obtained.
This temperature coincides with the environment temperature if the system reaches thermal equilibrium with a heat reservoir.
We show that within this theoretical framework the total entropy production can be partitioned into two contributions.
arXiv Detail & Related papers (2020-04-09T23:06:43Z) - Irreversibility mitigation in unital non-Markovian quantum evolutions [5.8010446129208155]
We study the behavior of the entropy production in open quantum systems undergoing unital non-Markovian dynamics.
Although the dynamics of the system is irreversible, our result may be interpreted as a transient tendency towards reversibility.
arXiv Detail & Related papers (2020-04-09T16:04:27Z) - Quantum coherence and criticality in irreversible work [0.0]
The irreversible work during a driving protocol constitutes one of the most widely studied measures in non-equilibrium thermodynamics.
In quantum systems, it has been shown that the irreversible work has an additional, genuinely quantum mechanical contribution, due to coherence produced by the driving protocol.
arXiv Detail & Related papers (2020-04-01T17:58:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.