Engineering Trustworthy Software: A Mission for LLMs
- URL: http://arxiv.org/abs/2411.17981v1
- Date: Wed, 27 Nov 2024 01:30:44 GMT
- Title: Engineering Trustworthy Software: A Mission for LLMs
- Authors: Marco Vieira,
- Abstract summary: LLMs are transforming software engineering by accelerating development, reducing complexity, and cutting costs.
They will drive design, development and deployment while facilitating early bug detection, continuous improvement, and rapid resolution of critical issues.
- Score: 1.0878040851638
- License:
- Abstract: LLMs are transforming software engineering by accelerating development, reducing complexity, and cutting costs. When fully integrated into the software lifecycle they will drive design, development and deployment while facilitating early bug detection, continuous improvement, and rapid resolution of critical issues. However, trustworthy LLM-driven software engineering requires addressing multiple challenges such as accuracy, scalability, bias, and explainability.
Related papers
- Specifications: The missing link to making the development of LLM systems an engineering discipline [65.10077876035417]
We discuss the progress the field has made so far-through advances like structured outputs, process supervision, and test-time compute.
We outline several future directions for research to enable the development of modular and reliable LLM-based systems.
arXiv Detail & Related papers (2024-11-25T07:48:31Z) - Software Performance Engineering for Foundation Model-Powered Software (FMware) [6.283211168007636]
Foundation Models (FMs) like Large Language Models (LLMs) are revolutionizing software development.
This paper highlights the significance of Software Performance Engineering (SPE) in FMware.
We identify four key challenges: cognitive architecture design, communication protocols, tuning and optimization, and deployment.
arXiv Detail & Related papers (2024-11-14T16:42:19Z) - LLMs: A Game-Changer for Software Engineers? [0.0]
Large Language Models (LLMs) like GPT-3 and GPT-4 have emerged as groundbreaking innovations with capabilities that extend far beyond traditional AI applications.
Their potential to revolutionize software development has captivated the software engineering (SE) community.
This paper argues that LLMs are not just reshaping how software is developed but are redefining the role of developers.
arXiv Detail & Related papers (2024-11-01T17:14:37Z) - AIvril: AI-Driven RTL Generation With Verification In-The-Loop [0.7831852829409273]
Large Language Models (LLMs) are computational models capable of performing complex natural language processing tasks.
This paper introduces AIvril, a framework designed to enhance the accuracy and reliability of RTL-aware LLMs.
arXiv Detail & Related papers (2024-09-03T15:07:11Z) - Agent-Driven Automatic Software Improvement [55.2480439325792]
This research proposal aims to explore innovative solutions by focusing on the deployment of agents powered by Large Language Models (LLMs)
The iterative nature of agents, which allows for continuous learning and adaptation, can help surpass common challenges in code generation.
We aim to use the iterative feedback in these systems to further fine-tune the LLMs underlying the agents, becoming better aligned to the task of automated software improvement.
arXiv Detail & Related papers (2024-06-24T15:45:22Z) - Prompting Large Language Models to Tackle the Full Software Development Lifecycle: A Case Study [72.24266814625685]
We explore the performance of large language models (LLMs) across the entire software development lifecycle with DevEval.
DevEval features four programming languages, multiple domains, high-quality data collection, and carefully designed and verified metrics for each task.
Empirical studies show that current LLMs, including GPT-4, fail to solve the challenges presented within DevEval.
arXiv Detail & Related papers (2024-03-13T15:13:44Z) - Large Language Models for Software Engineering: Survey and Open Problems [35.29302720251483]
This paper provides a survey of the emerging area of Large Language Models (LLMs) for Software Engineering (SE)
Our survey reveals the pivotal role that hybrid techniques (traditional SE plus LLMs) have to play in the development and deployment of reliable, efficient and effective LLM-based SE.
arXiv Detail & Related papers (2023-10-05T13:33:26Z) - Embedded Software Development with Digital Twins: Specific Requirements
for Small and Medium-Sized Enterprises [55.57032418885258]
Digital twins have the potential for cost-effective software development and maintenance strategies.
We interviewed SMEs about their current development processes.
First results show that real-time requirements prevent, to date, a Software-in-the-Loop development approach.
arXiv Detail & Related papers (2023-09-17T08:56:36Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
Development and deployment of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
We have developed a proven systems engineering approach for machine learning development and deployment.
Our "Machine Learning Technology Readiness Levels" framework defines a principled process to ensure robust, reliable, and responsible systems.
arXiv Detail & Related papers (2021-01-11T15:54:48Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
Development of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
Engineering systems follow well-defined processes and testing standards to streamline development for high-quality, reliable results.
We propose a proven systems engineering approach for machine learning development and deployment.
arXiv Detail & Related papers (2020-06-21T17:14:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.