AIvril: AI-Driven RTL Generation With Verification In-The-Loop
- URL: http://arxiv.org/abs/2409.11411v1
- Date: Tue, 3 Sep 2024 15:07:11 GMT
- Title: AIvril: AI-Driven RTL Generation With Verification In-The-Loop
- Authors: Mubashir ul Islam, Humza Sami, Pierre-Emmanuel Gaillardon, Valerio Tenace,
- Abstract summary: Large Language Models (LLMs) are computational models capable of performing complex natural language processing tasks.
This paper introduces AIvril, a framework designed to enhance the accuracy and reliability of RTL-aware LLMs.
- Score: 0.7831852829409273
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) are computational models capable of performing complex natural language processing tasks. Leveraging these capabilities, LLMs hold the potential to transform the entire hardware design stack, with predictions suggesting that front-end and back-end tasks could be fully automated in the near future. Currently, LLMs show great promise in streamlining Register Transfer Level (RTL) generation, enhancing efficiency, and accelerating innovation. However, their probabilistic nature makes them prone to inaccuracies - a significant drawback in RTL design, where reliability and precision are essential. To address these challenges, this paper introduces AIvril, an advanced framework designed to enhance the accuracy and reliability of RTL-aware LLMs. AIvril employs a multi-agent, LLM-agnostic system for automatic syntax correction and functional verification, significantly reducing - and in many cases, completely eliminating - instances of erroneous code generation. Experimental results conducted on the VerilogEval-Human dataset show that our framework improves code quality by nearly 2x when compared to previous works, while achieving an 88.46% success rate in meeting verification objectives. This represents a critical step toward automating and optimizing hardware design workflows, offering a more dependable methodology for AI-driven RTL design.
Related papers
- DeeR-VLA: Dynamic Inference of Multimodal Large Language Models for Efficient Robot Execution [114.61347672265076]
Development of MLLMs for real-world robots is challenging due to the typically limited computation and memory capacities available on robotic platforms.
We propose a Dynamic Early-Exit Framework for Robotic Vision-Language-Action Model (DeeR) that automatically adjusts the size of the activated MLLM.
DeeR demonstrates significant reductions in computational costs of LLM by 5.2-6.5x and GPU memory of LLM by 2-6x without compromising performance.
arXiv Detail & Related papers (2024-11-04T18:26:08Z) - FVEval: Understanding Language Model Capabilities in Formal Verification of Digital Hardware [4.480157114854711]
We present FVEval, the first comprehensive benchmark for characterizing large language models (LLMs) performance in tasks pertaining to formal verification (FV)
The benchmark consists of three sub-tasks that measure LLM capabilities at different levels.
We present both collections of expert-written verification collateral and methodologies to scalably generate synthetic examples aligned with FV.
arXiv Detail & Related papers (2024-10-15T21:48:57Z) - RGD: Multi-LLM Based Agent Debugger via Refinement and Generation Guidance [0.6062751776009752]
Large Language Models (LLMs) have shown incredible potential in code generation tasks.
LLMs can generate code based on task descriptions, but accuracy remains limited.
We introduce a novel architecture of LLM-based agents for code generation and automatic debug: Refinement and Guidance debugger (RGD)
RGD decomposes the code generation task into multiple steps, ensuring a clearer workflow and enabling iterative code refinement based on self-reflection and feedback.
arXiv Detail & Related papers (2024-10-02T05:07:02Z) - Are LLMs Any Good for High-Level Synthesis? [1.3927943269211591]
Large Language Models (LLMs) can streamline or replace the High-Level Synthesis (HLS) process.
LLMs can understand natural language specifications and translate C code or natural language specifications.
This study aims to illuminate the role of LLMs in HLS, identifying promising directions for optimized hardware design in applications such as AI acceleration, embedded systems, and high-performance computing.
arXiv Detail & Related papers (2024-08-19T21:40:28Z) - Adaptive Draft-Verification for Efficient Large Language Model Decoding [24.347886232342862]
Large language model (LLM) decoding involves generating a sequence of tokens based on a given context.
The typical autoregressive decoding method requires a separate forward pass through the model for each token generated.
We introduce ADED, which accelerates LLM decoding without requiring fine-tuning.
arXiv Detail & Related papers (2024-06-27T22:20:39Z) - Agent-Driven Automatic Software Improvement [55.2480439325792]
This research proposal aims to explore innovative solutions by focusing on the deployment of agents powered by Large Language Models (LLMs)
The iterative nature of agents, which allows for continuous learning and adaptation, can help surpass common challenges in code generation.
We aim to use the iterative feedback in these systems to further fine-tune the LLMs underlying the agents, becoming better aligned to the task of automated software improvement.
arXiv Detail & Related papers (2024-06-24T15:45:22Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - One Token Can Help! Learning Scalable and Pluggable Virtual Tokens for Retrieval-Augmented Large Language Models [67.49462724595445]
Retrieval-augmented generation (RAG) is a promising way to improve large language models (LLMs)
We propose a novel method that involves learning scalable and pluggable virtual tokens for RAG.
arXiv Detail & Related papers (2024-05-30T03:44:54Z) - DS-Agent: Automated Data Science by Empowering Large Language Models with Case-Based Reasoning [56.887047551101574]
We present DS-Agent, a novel framework that harnesses large language models (LLMs) agent and case-based reasoning (CBR)
In the development stage, DS-Agent follows the CBR framework to structure an automatic iteration pipeline, which can flexibly capitalize on the expert knowledge from Kaggle.
In the deployment stage, DS-Agent implements a low-resource deployment stage with a simplified CBR paradigm, significantly reducing the demand on foundational capabilities of LLMs.
arXiv Detail & Related papers (2024-02-27T12:26:07Z) - CodeRL: Mastering Code Generation through Pretrained Models and Deep
Reinforcement Learning [92.36705236706678]
"CodeRL" is a new framework for program synthesis tasks through pretrained LMs and deep reinforcement learning.
During inference, we introduce a new generation procedure with a critical sampling strategy.
For the model backbones, we extended the encoder-decoder architecture of CodeT5 with enhanced learning objectives.
arXiv Detail & Related papers (2022-07-05T02:42:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.