Optimized Conformal Selection: Powerful Selective Inference After Conformity Score Optimization
- URL: http://arxiv.org/abs/2411.17983v1
- Date: Wed, 27 Nov 2024 01:40:50 GMT
- Title: Optimized Conformal Selection: Powerful Selective Inference After Conformity Score Optimization
- Authors: Tian Bai, Ying Jin,
- Abstract summary: This paper presents OptCS, a framework that allows valid statistical testing (selection) after flexible data-driven model optimization.<n>We introduce general conditions under which OptCS constructs valid conformal p-values despite substantial data reuse.<n>We propose three FDR-controlling procedures, each optimizing the models differently.
- Score: 4.984656106595651
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Model selection/optimization in conformal inference is challenging, since it may break the exchangeability between labeled and unlabeled data. We study this problem in the context of conformal selection, which uses conformal p-values to select ``interesting'' instances with large unobserved labels from a pool of unlabeled data, while controlling the FDR in finite sample. For validity, existing solutions require the model choice to be independent of the data used to construct the p-values and calibrate the selection set. However, when presented with many model choices and limited labeled data, it is desirable to (i) select the best model in a data-driven manner, and (ii) mitigate power loss due to sample splitting. This paper presents OptCS, a general framework that allows valid statistical testing (selection) after flexible data-driven model optimization. We introduce general conditions under which OptCS constructs valid conformal p-values despite substantial data reuse and handles complex p-value dependencies to maintain finite-sample FDR control via a novel multiple testing procedure. We instantiate this general recipe to propose three FDR-controlling procedures, each optimizing the models differently: (i) selecting the most powerful one among multiple pre-trained candidate models, (ii) using all data for model fitting without sample splitting, and (iii) combining full-sample model fitting and selection. We demonstrate the efficacy of our methods via simulation studies and real applications in drug discovery and alignment of large language models in radiology report generation.
Related papers
- Finding the Sweet Spot: Preference Data Construction for Scaling Preference Optimization [66.67988187816185]
We aim to emphscale up the number of on-policy samples via repeated random sampling to improve alignment performance.
Our experiments reveal that this strategy leads to a emphdecline in performance as the sample size increases.
We introduce a scalable preference data construction strategy that consistently enhances model performance as the sample scale increases.
arXiv Detail & Related papers (2025-02-24T04:22:57Z) - Stabilizing black-box model selection with the inflated argmax [8.52745154080651]
We present a new approach to stabilizing model selection with theoretical stability guarantees.
Our method selects a small collection of models that all fit the data, and it is stable in that, with high probability, the removal of any training point will result in a collection of selected models that overlap with the original collection.
arXiv Detail & Related papers (2024-10-23T20:39:07Z) - An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting [53.36437745983783]
We first construct a max-margin optimization-based model to model potentially non-monotonic preferences.
We devise information amount measurement methods and question selection strategies to pinpoint the most informative alternative in each iteration.
Two incremental preference elicitation-based algorithms are developed to learn potentially non-monotonic preferences.
arXiv Detail & Related papers (2024-09-04T14:36:20Z) - SKADA-Bench: Benchmarking Unsupervised Domain Adaptation Methods with Realistic Validation [55.87169702896249]
Unsupervised Domain Adaptation (DA) consists of adapting a model trained on a labeled source domain to perform well on an unlabeled target domain with some data distribution shift.
We propose a framework to evaluate DA methods and present a fair evaluation of existing shallow algorithms, including reweighting, mapping, and subspace alignment.
Our benchmark highlights the importance of realistic validation and provides practical guidance for real-life applications.
arXiv Detail & Related papers (2024-07-16T12:52:29Z) - Take the essence and discard the dross: A Rethinking on Data Selection for Fine-Tuning Large Language Models [38.39395973523944]
We propose a three-stage scheme for data selection and review existing works according to this scheme.
We find that the more targeted method with data-specific and model-specific quality labels has higher efficiency.
arXiv Detail & Related papers (2024-06-20T08:58:58Z) - DsDm: Model-Aware Dataset Selection with Datamodels [81.01744199870043]
Standard practice is to filter for examples that match human notions of data quality.
We find that selecting according to similarity with "high quality" data sources may not increase (and can even hurt) performance compared to randomly selecting data.
Our framework avoids handpicked notions of data quality, and instead models explicitly how the learning process uses train datapoints to predict on the target tasks.
arXiv Detail & Related papers (2024-01-23T17:22:00Z) - Towards Free Data Selection with General-Purpose Models [71.92151210413374]
A desirable data selection algorithm can efficiently choose the most informative samples to maximize the utility of limited annotation budgets.
Current approaches, represented by active learning methods, typically follow a cumbersome pipeline that iterates the time-consuming model training and batch data selection repeatedly.
FreeSel bypasses the heavy batch selection process, achieving a significant improvement in efficiency and being 530x faster than existing active learning methods.
arXiv Detail & Related papers (2023-09-29T15:50:14Z) - A model-free feature selection technique of feature screening and random
forest based recursive feature elimination [0.0]
We propose a model-free feature selection method for ultra-high dimensional data with mass features.
We show that the proposed method is selection consistent and $L$ consistent under weak regularity conditions.
arXiv Detail & Related papers (2023-02-15T03:39:16Z) - Out-of-sample scoring and automatic selection of causal estimators [0.0]
We propose novel scoring approaches for both the CATE case and an important subset of instrumental variable problems.
We implement that in an open source package that relies on DoWhy and EconML libraries.
arXiv Detail & Related papers (2022-12-20T08:29:18Z) - Cost-Effective Online Contextual Model Selection [14.094350329970537]
We formulate this task as an online contextual active model selection problem, where at each round the learner receives an unlabeled data point along with a context.
The goal is to output the best model for any given context without obtaining an excessive amount of labels.
We propose a contextual active model selection algorithm (CAMS), which relies on a novel uncertainty sampling query criterion defined on a given policy class for adaptive model selection.
arXiv Detail & Related papers (2022-07-13T08:22:22Z) - Efficient Test-Time Model Adaptation without Forgetting [60.36499845014649]
Test-time adaptation seeks to tackle potential distribution shifts between training and testing data.
We propose an active sample selection criterion to identify reliable and non-redundant samples.
We also introduce a Fisher regularizer to constrain important model parameters from drastic changes.
arXiv Detail & Related papers (2022-04-06T06:39:40Z) - One for More: Selecting Generalizable Samples for Generalizable ReID
Model [92.40951770273972]
This paper proposes a one-for-more training objective that takes the generalization ability of selected samples as a loss function.
Our proposed one-for-more based sampler can be seamlessly integrated into the ReID training framework.
arXiv Detail & Related papers (2020-12-10T06:37:09Z) - Joint Adaptive Graph and Structured Sparsity Regularization for
Unsupervised Feature Selection [6.41804410246642]
We propose a joint adaptive graph and structured sparsity regularization unsupervised feature selection (JASFS) method.
A subset of optimal features will be selected in group, and the number of selected features will be determined automatically.
Experimental results on eight benchmarks demonstrate the effectiveness and efficiency of the proposed method.
arXiv Detail & Related papers (2020-10-09T08:17:04Z) - Consistent and Flexible Selectivity Estimation for High-Dimensional Data [23.016360687961193]
We propose a new deep learning-based model that learns a query-dependent piecewise linear function as selectivity estimator.
We show that the proposed model consistently outperforms state-of-the-art models in accuracy in an efficient way.
arXiv Detail & Related papers (2020-05-20T08:24:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.