A Novel Pareto-optimal Ranking Method for Comparing Multi-objective Optimization Algorithms
- URL: http://arxiv.org/abs/2411.17999v1
- Date: Wed, 27 Nov 2024 02:34:54 GMT
- Title: A Novel Pareto-optimal Ranking Method for Comparing Multi-objective Optimization Algorithms
- Authors: Amin Ibrahim, Azam Asilian Bidgoli, Shahryar Rahnamayan, Kalyanmoy Deb,
- Abstract summary: This paper proposes a novel multi-metric comparison method to rank the performance of multi-/many-objective optimization algorithms.
Four different techniques are proposed to rank algorithms based on their contribution at each Pareto level.
The techniques have broad applications in science and engineering, particularly in areas where multiple metrics are used for comparisons.
- Score: 2.889178722750616
- License:
- Abstract: As the interest in multi- and many-objective optimization algorithms grows, the performance comparison of these algorithms becomes increasingly important. A large number of performance indicators for multi-objective optimization algorithms have been introduced, each of which evaluates these algorithms based on a certain aspect. Therefore, assessing the quality of multi-objective results using multiple indicators is essential to guarantee that the evaluation considers all quality perspectives. This paper proposes a novel multi-metric comparison method to rank the performance of multi-/ many-objective optimization algorithms based on a set of performance indicators. We utilize the Pareto optimality concept (i.e., non-dominated sorting algorithm) to create the rank levels of algorithms by simultaneously considering multiple performance indicators as criteria/objectives. As a result, four different techniques are proposed to rank algorithms based on their contribution at each Pareto level. This method allows researchers to utilize a set of existing/newly developed performance metrics to adequately assess/rank multi-/many-objective algorithms. The proposed methods are scalable and can accommodate in its comprehensive scheme any newly introduced metric. The method was applied to rank 10 competing algorithms in the 2018 CEC competition solving 15 many-objective test problems. The Pareto-optimal ranking was conducted based on 10 well-known multi-objective performance indicators and the results were compared to the final ranks reported by the competition, which were based on the inverted generational distance (IGD) and hypervolume indicator (HV) measures. The techniques suggested in this paper have broad applications in science and engineering, particularly in areas where multiple metrics are used for comparisons. Examples include machine learning and data mining.
Related papers
- HRA: A Multi-Criteria Framework for Ranking Metaheuristic Optimization Algorithms [0.0]
The HRA algorithm aims to efficiently rank metaheuristic algorithms based on their performance across many criteria and dimensions.
Our study uses data from the CEC 2017 competition to demonstrate the robustness and efficacy of the HRA framework.
arXiv Detail & Related papers (2024-09-18T00:44:50Z) - A Novel Ranking Scheme for the Performance Analysis of Stochastic Optimization Algorithms using the Principles of Severity [9.310464457958844]
We provide a novel ranking scheme to rank the algorithms over multiple single-objective optimization problems.
The results of the algorithms are compared using a robust bootstrapping-based hypothesis testing procedure.
arXiv Detail & Related papers (2024-05-31T19:35:34Z) - Multi-Dimensional Ability Diagnosis for Machine Learning Algorithms [88.93372675846123]
We propose a task-agnostic evaluation framework Camilla for evaluating machine learning algorithms.
We use cognitive diagnosis assumptions and neural networks to learn the complex interactions among algorithms, samples and the skills of each sample.
In our experiments, Camilla outperforms state-of-the-art baselines on the metric reliability, rank consistency and rank stability.
arXiv Detail & Related papers (2023-07-14T03:15:56Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Multi-objective learner performance-based behavior algorithm with five
multi-objective real-world engineering problems [19.535715565093764]
The proposed algorithm is based on the process of transferring students from high school to college.
The proposed technique produces a set of non-dominated solutions.
The results proved the ability of the proposed work in providing a set of non-dominated solutions.
arXiv Detail & Related papers (2022-01-15T14:17:22Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
We study a class of algorithms for solving bilevel optimization problems in both deterministic and deterministic settings.
We exploit a warm-start strategy to amortize the estimation of the exact gradient.
By using this framework, our analysis shows these algorithms to match the computational complexity of methods that have access to an unbiased estimate of the gradient.
arXiv Detail & Related papers (2021-11-29T15:10:09Z) - A survey on multi-objective hyperparameter optimization algorithms for
Machine Learning [62.997667081978825]
This article presents a systematic survey of the literature published between 2014 and 2020 on multi-objective HPO algorithms.
We distinguish between metaheuristic-based algorithms, metamodel-based algorithms, and approaches using a mixture of both.
We also discuss the quality metrics used to compare multi-objective HPO procedures and present future research directions.
arXiv Detail & Related papers (2021-11-23T10:22:30Z) - Benchmarking Simulation-Based Inference [5.3898004059026325]
Recent advances in probabilistic modelling have led to a large number of simulation-based inference algorithms which do not require numerical evaluation of likelihoods.
We provide a benchmark with inference tasks and suitable performance metrics, with an initial selection of algorithms.
We found that the choice of performance metric is critical, that even state-of-the-art algorithms have substantial room for improvement, and that sequential estimation improves sample efficiency.
arXiv Detail & Related papers (2021-01-12T18:31:22Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
Adaptivity is an important yet under-studied property in modern optimization theory.
Our algorithm is proved to achieve the best-available convergence for non-PL objectives simultaneously while outperforming existing algorithms for PL objectives.
arXiv Detail & Related papers (2020-02-13T05:42:27Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
We propose the setting of extreme algorithm selection (XAS) where we consider fixed sets of thousands of candidate algorithms.
We assess the applicability of state-of-the-art AS techniques to the XAS setting and propose approaches leveraging a dyadic feature representation.
arXiv Detail & Related papers (2020-01-29T09:40:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.