HRA: A Multi-Criteria Framework for Ranking Metaheuristic Optimization Algorithms
- URL: http://arxiv.org/abs/2409.11617v1
- Date: Wed, 18 Sep 2024 00:44:50 GMT
- Title: HRA: A Multi-Criteria Framework for Ranking Metaheuristic Optimization Algorithms
- Authors: Evgenia-Maria K. Goula, Dimitris G. Sotiropoulos,
- Abstract summary: The HRA algorithm aims to efficiently rank metaheuristic algorithms based on their performance across many criteria and dimensions.
Our study uses data from the CEC 2017 competition to demonstrate the robustness and efficacy of the HRA framework.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Metaheuristic algorithms are essential for solving complex optimization problems in different fields. However, the difficulty in comparing and rating these algorithms remains due to the wide range of performance metrics and problem dimensions usually involved. On the other hand, nonparametric statistical methods and post hoc tests are time-consuming, especially when we only need to identify the top performers among many algorithms. The Hierarchical Rank Aggregation (HRA) algorithm aims to efficiently rank metaheuristic algorithms based on their performance across many criteria and dimensions. The HRA employs a hierarchical framework that begins with collecting performance metrics on various benchmark functions and dimensions. Rank-based normalization is employed for each performance measure to ensure comparability and the robust TOPSIS aggregation is applied to combine these rankings at several hierarchical levels, resulting in a comprehensive ranking of the algorithms. Our study uses data from the CEC 2017 competition to demonstrate the robustness and efficacy of the HRA framework. It examines 30 benchmark functions and evaluates the performance of 13 metaheuristic algorithms across five performance indicators in four distinct dimensions. This presentation highlights the potential of the HRA to enhance the interpretation of the comparative advantages and disadvantages of various algorithms by simplifying practitioners' choices of the most appropriate algorithm for certain optimization problems.
Related papers
- A Novel Ranking Scheme for the Performance Analysis of Stochastic Optimization Algorithms using the Principles of Severity [9.310464457958844]
We provide a novel ranking scheme to rank the algorithms over multiple single-objective optimization problems.
The results of the algorithms are compared using a robust bootstrapping-based hypothesis testing procedure.
arXiv Detail & Related papers (2024-05-31T19:35:34Z) - Equitable and Fair Performance Evaluation of Whale Optimization
Algorithm [4.0814527055582746]
It is essential that all algorithms are exhaustively, somewhat, and intelligently evaluated.
evaluating the effectiveness of optimization algorithms equitably and fairly is not an easy process for various reasons.
arXiv Detail & Related papers (2023-09-04T06:32:02Z) - A Gold Standard Dataset for the Reviewer Assignment Problem [117.59690218507565]
"Similarity score" is a numerical estimate of the expertise of a reviewer in reviewing a paper.
Our dataset consists of 477 self-reported expertise scores provided by 58 researchers.
For the task of ordering two papers in terms of their relevance for a reviewer, the error rates range from 12%-30% in easy cases to 36%-43% in hard cases.
arXiv Detail & Related papers (2023-03-23T16:15:03Z) - HARRIS: Hybrid Ranking and Regression Forests for Algorithm Selection [75.84584400866254]
We propose a new algorithm selector leveraging special forests, combining the strengths of both approaches while alleviating their weaknesses.
HARRIS' decisions are based on a forest model, whose trees are created based on optimized on a hybrid ranking and regression loss function.
arXiv Detail & Related papers (2022-10-31T14:06:11Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Multi-objective learner performance-based behavior algorithm with five
multi-objective real-world engineering problems [19.535715565093764]
The proposed algorithm is based on the process of transferring students from high school to college.
The proposed technique produces a set of non-dominated solutions.
The results proved the ability of the proposed work in providing a set of non-dominated solutions.
arXiv Detail & Related papers (2022-01-15T14:17:22Z) - A survey on multi-objective hyperparameter optimization algorithms for
Machine Learning [62.997667081978825]
This article presents a systematic survey of the literature published between 2014 and 2020 on multi-objective HPO algorithms.
We distinguish between metaheuristic-based algorithms, metamodel-based algorithms, and approaches using a mixture of both.
We also discuss the quality metrics used to compare multi-objective HPO procedures and present future research directions.
arXiv Detail & Related papers (2021-11-23T10:22:30Z) - Learning to Hash Robustly, with Guarantees [79.68057056103014]
In this paper, we design an NNS algorithm for the Hamming space that has worst-case guarantees essentially matching that of theoretical algorithms.
We evaluate the algorithm's ability to optimize for a given dataset both theoretically and practically.
Our algorithm has a 1.8x and 2.1x better recall on the worst-performing queries to the MNIST and ImageNet datasets.
arXiv Detail & Related papers (2021-08-11T20:21:30Z) - Benchmarking Simulation-Based Inference [5.3898004059026325]
Recent advances in probabilistic modelling have led to a large number of simulation-based inference algorithms which do not require numerical evaluation of likelihoods.
We provide a benchmark with inference tasks and suitable performance metrics, with an initial selection of algorithms.
We found that the choice of performance metric is critical, that even state-of-the-art algorithms have substantial room for improvement, and that sequential estimation improves sample efficiency.
arXiv Detail & Related papers (2021-01-12T18:31:22Z) - Performance Analysis of Meta-heuristic Algorithms for a Quadratic
Assignment Problem [6.555180412600522]
A quadratic assignment problem (QAP) is an optimization problem that belongs to the class of NP-hard ones.
Heuristics and meta-heuristics algorithm are prevalent solution methods for this problem.
This paper is one of comparative studies to apply different metaheuristic algorithms for solving the QAP.
arXiv Detail & Related papers (2020-07-29T15:02:07Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
We propose the setting of extreme algorithm selection (XAS) where we consider fixed sets of thousands of candidate algorithms.
We assess the applicability of state-of-the-art AS techniques to the XAS setting and propose approaches leveraging a dyadic feature representation.
arXiv Detail & Related papers (2020-01-29T09:40:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.