論文の概要: Monocular Obstacle Avoidance Based on Inverse PPO for Fixed-wing UAVs
- arxiv url: http://arxiv.org/abs/2411.18009v1
- Date: Wed, 27 Nov 2024 03:03:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 15:25:35.335965
- Title: Monocular Obstacle Avoidance Based on Inverse PPO for Fixed-wing UAVs
- Title(参考訳): 固定翼UAVの逆PPOに基づく単分子障害物回避
- Authors: Haochen Chai, Meimei Su, Yang Lyu, Zhunga Liu, Chunhui Zhao, Quan Pan,
- Abstract要約: 固定翼無人航空機(英語: Fixed-wing Unmanned Aerial Vehicles、UAV)は、低高度経済(LAE)と都市空運(UAM)のための最も一般的なプラットフォームの一つである。
従来の地図や高度なセンサーに依存する古典的な障害物回避システムは、未知の低高度環境や小型UAVプラットフォームにおいて制限に直面している。
本稿では,DRLに基づくUAV衝突回避システムを提案する。
- 参考スコア(独自算出の注目度): 29.207513994002202
- License:
- Abstract: Fixed-wing Unmanned Aerial Vehicles (UAVs) are one of the most commonly used platforms for the burgeoning Low-altitude Economy (LAE) and Urban Air Mobility (UAM), due to their long endurance and high-speed capabilities. Classical obstacle avoidance systems, which rely on prior maps or sophisticated sensors, face limitations in unknown low-altitude environments and small UAV platforms. In response, this paper proposes a lightweight deep reinforcement learning (DRL) based UAV collision avoidance system that enables a fixed-wing UAV to avoid unknown obstacles at cruise speed over 30m/s, with only onboard visual sensors. The proposed system employs a single-frame image depth inference module with a streamlined network architecture to ensure real-time obstacle detection, optimized for edge computing devices. After that, a reinforcement learning controller with a novel reward function is designed to balance the target approach and flight trajectory smoothness, satisfying the specific dynamic constraints and stability requirements of a fixed-wing UAV platform. An adaptive entropy adjustment mechanism is introduced to mitigate the exploration-exploitation trade-off inherent in DRL, improving training convergence and obstacle avoidance success rates. Extensive software-in-the-loop and hardware-in-the-loop experiments demonstrate that the proposed framework outperforms other methods in obstacle avoidance efficiency and flight trajectory smoothness and confirm the feasibility of implementing the algorithm on edge devices. The source code is publicly available at \url{https://github.com/ch9397/FixedWing-MonoPPO}.
- Abstract(参考訳): 固定翼無人航空機(英語: Fixed-wing Unmanned Aerial Vehicles、UAV)は、低高度経済(LAE)と都市空力(UAM)のための最も一般的なプラットフォームの一つである。
従来の地図や高度なセンサーに依存する古典的な障害物回避システムは、未知の低高度環境や小型UAVプラットフォームにおいて制限に直面している。
そこで本研究では,30m/s以上の巡航速度での未知の障害物を回避できる,DRL(Lightlight Deep reinforcement Learning)に基づくUAV衝突回避システムを提案する。
提案システムでは,エッジコンピューティングデバイスに最適化されたリアルタイム障害物検出を実現するために,一フレーム画像深度推定モジュールと合理化ネットワークアーキテクチャを用いている。
その後、目標のアプローチと飛行軌道の滑らかさのバランスを保ち、固定翼UAVプラットフォームの特定の動的制約と安定性の要求を満たすように、新たな報酬関数を持つ強化学習コントローラを設計する。
適応的なエントロピー調整機構を導入し、DRL固有の探索・探索トレードオフを緩和し、トレーニング収束と障害物回避成功率を改善する。
大規模ソフトウェア・イン・ザ・ループおよびハードウェア・イン・ザ・ループ実験により,提案手法は障害物回避効率および飛行軌道の滑らかさにおいて他の手法よりも優れており,エッジデバイス上でのアルゴリズム実装の可能性が確認されている。
ソースコードは \url{https://github.com/ch9397/FixedWing-MonoPPO} で公開されている。
関連論文リスト
- Custom Non-Linear Model Predictive Control for Obstacle Avoidance in Indoor and Outdoor Environments [0.0]
本稿では,DJI行列100のための非線形モデル予測制御(NMPC)フレームワークを提案する。
このフレームワークは様々なトラジェクトリタイプをサポートし、厳密な操作の精度を制御するためにペナルティベースのコスト関数を採用している。
論文 参考訳(メタデータ) (2024-10-03T17:50:19Z) - Angle Robustness Unmanned Aerial Vehicle Navigation in GNSS-Denied
Scenarios [66.05091704671503]
本稿では、ポイントツーポイントナビゲーションタスクにおける飛行偏差に対処する新しい角度ナビゲーションパラダイムを提案する。
また、Adaptive Feature Enhance Module、Cross-knowledge Attention-guided Module、Robust Task-oriented Head Moduleを含むモデルを提案する。
論文 参考訳(メタデータ) (2024-02-04T08:41:20Z) - DATT: Deep Adaptive Trajectory Tracking for Quadrotor Control [62.24301794794304]
Deep Adaptive Trajectory Tracking (DATT)は、学習に基づくアプローチであり、現実世界の大きな乱れの存在下で、任意の、潜在的に実現不可能な軌跡を正確に追跡することができる。
DATTは、非定常風場における可溶性および非実用性の両方の軌道に対して、競争適応性非線形およびモデル予測コントローラを著しく上回っている。
適応非線形モデル予測制御ベースラインの1/4未満である3.2ms未満の推論時間で、効率的にオンラインで実行することができる。
論文 参考訳(メタデータ) (2023-10-13T12:22:31Z) - Integrated Sensing, Computation, and Communication for UAV-assisted
Federated Edge Learning [52.7230652428711]
フェデレーションエッジ学習(FEEL)は、エッジデバイスとサーバ間の定期的な通信を通じて、プライバシ保護モデルトレーニングを可能にする。
無人航空機(UAV)搭載エッジデバイスは、効率的なデータ収集における柔軟性と移動性のため、FEELにとって特に有利である。
論文 参考訳(メタデータ) (2023-06-05T16:01:33Z) - Reinforcement Learning-Based Air Traffic Deconfliction [7.782300855058585]
本研究は,2機の水平分離を自動化することに焦点を当て,障害物回避問題を2次元サロゲート最適化課題として提示する。
強化学習(RL)を用いて、回避ポリシーを最適化し、ダイナミクス、インタラクション、意思決定をモデル化する。
提案システムは,安全要件を満たす高速かつ達成可能な回避軌道を生成する。
論文 参考訳(メタデータ) (2023-01-05T00:37:20Z) - Reward Function Optimization of a Deep Reinforcement Learning Collision
Avoidance System [0.0]
無人航空機システム(UAS)の普及により、航空宇宙規制当局はこれらの航空機と衝突回避システムとの相互運用性を検討するようになった。
現在義務化されているTCASの制限により、連邦航空局は新たなソリューションである空中衝突回避システムX(ACAS X)の開発を委託した。
本研究では,サロゲートを用いてパラメータを調整したDRL衝突回避システムの利点について検討する。
論文 参考訳(メタデータ) (2022-12-01T20:20:41Z) - Joint Optimization of Deployment and Trajectory in UAV and IRS-Assisted
IoT Data Collection System [25.32139119893323]
無人航空機(UAV)は多くのモノのインターネット(IoT)システムに適用できる。
UAV-IoT無線チャネルは、時には木や高層建築物によってブロックされることがある。
本稿では,UAVの展開と軌道を最適化することで,システムのエネルギー消費を最小化することを目的とする。
論文 参考訳(メタデータ) (2022-10-27T06:27:40Z) - Smooth Trajectory Collision Avoidance through Deep Reinforcement
Learning [0.0]
本稿では,DRLに基づくナビゲーションソリューションにおける2つの重要な問題に対処するために,エージェントの状態と報酬関数の設計を提案する。
我々のモデルは、衝突の可能性を著しく低減しつつ、UAVのスムーズな飛行を確保するために、マージンの報酬と滑らかさの制約に依存している。
論文 参考訳(メタデータ) (2022-10-12T16:27:32Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
無人航空機(UAV)は現在、無線通信におけるネットワーク性能とカバレッジを高めるために配備され始めている。
UAV支援モノのインターネット(IoT)のための最適な資源配分方式を得ることは困難である
本稿では,UAVの最も短い飛行経路に依存しつつ,IoTデバイスから収集したデータ量を最大化しながら,新しいUAV支援IoTシステムを設計する。
論文 参考訳(メタデータ) (2021-06-06T14:08:41Z) - Simultaneous Navigation and Radio Mapping for Cellular-Connected UAV
with Deep Reinforcement Learning [46.55077580093577]
空のUAVに対して、ユビキタスな3Dコミュニケーションを実現するには、新しい課題だ。
本稿では,UAVの制御可能な移動性を利用して航法・軌道を設計する新しい航法手法を提案する。
そこで我々は,UAVの信号計測を深部Qネットワークのトレーニングに用いるSNARM (Concurrent Navigation and Radio Mapping) という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-17T08:16:14Z) - Data Freshness and Energy-Efficient UAV Navigation Optimization: A Deep
Reinforcement Learning Approach [88.45509934702913]
我々は、移動基地局(BS)が配備される複数の無人航空機(UAV)のナビゲーションポリシーを設計する。
我々は、地上BSにおけるデータの鮮度を確保するために、エネルギーや情報年齢(AoI)の制約などの異なる文脈情報を組み込んだ。
提案したトレーニングモデルを適用することで、UAV-BSに対する効果的なリアルタイム軌道ポリシーは、時間とともに観測可能なネットワーク状態をキャプチャする。
論文 参考訳(メタデータ) (2020-02-21T07:29:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。