論文の概要: Reward Function Optimization of a Deep Reinforcement Learning Collision
Avoidance System
- arxiv url: http://arxiv.org/abs/2212.00855v1
- Date: Thu, 1 Dec 2022 20:20:41 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-05 17:24:17.761270
- Title: Reward Function Optimization of a Deep Reinforcement Learning Collision
Avoidance System
- Title(参考訳): 深層強化学習衝突回避システムの報酬関数最適化
- Authors: Cooper Cone, Michael Owen, Luis Alvarez, Marc Brittain
- Abstract要約: 無人航空機システム(UAS)の普及により、航空宇宙規制当局はこれらの航空機と衝突回避システムとの相互運用性を検討するようになった。
現在義務化されているTCASの制限により、連邦航空局は新たなソリューションである空中衝突回避システムX(ACAS X)の開発を委託した。
本研究では,サロゲートを用いてパラメータを調整したDRL衝突回避システムの利点について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The proliferation of unmanned aircraft systems (UAS) has caused airspace
regulation authorities to examine the interoperability of these aircraft with
collision avoidance systems initially designed for large transport category
aircraft. Limitations in the currently mandated TCAS led the Federal Aviation
Administration to commission the development of a new solution, the Airborne
Collision Avoidance System X (ACAS X), designed to enable a collision avoidance
capability for multiple aircraft platforms, including UAS. While prior research
explored using deep reinforcement learning algorithms (DRL) for collision
avoidance, DRL did not perform as well as existing solutions. This work
explores the benefits of using a DRL collision avoidance system whose
parameters are tuned using a surrogate optimizer. We show the use of a
surrogate optimizer leads to DRL approach that can increase safety and
operational viability and support future capability development for UAS
collision avoidance.
- Abstract(参考訳): 無人航空機システム(UAS)の普及により、航空規制当局がこれらの航空機と衝突回避システムとの相互運用性を検討するようになった。
現在義務化されているTCASの制限により、連邦航空局は、UASを含む複数の航空機プラットフォームでの衝突回避機能を実現するために設計された新しいソリューションである空中衝突回避システムX(ACAS X)の開発を委託した。
衝突回避のための深部強化学習アルゴリズム (DRL) を用いた以前の研究では、DRLは既存のソリューションほど性能が良くなかった。
本研究では,サロゲートオプティマイザを用いてパラメータを調整したDRL衝突回避システムの利点を検討する。
本稿では,サロゲートオプティマイザを用いることで,安全性と運用性を高め,UAS衝突回避のための今後の能力開発を支援するDRLアプローチを提案する。
関連論文リスト
- UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
本稿では,UAVを用いた協調ビームフォーミング多目的最適化問題 (UCBMOP) を定式化し,UAVの伝送速度を最大化し,全UAVのエネルギー消費を最小化する。
ヘテロジニアス・エージェント・信頼領域ポリシー最適化(HATRPO)を基本フレームワークとし,改良されたHATRPOアルゴリズム,すなわちHATRPO-UCBを提案する。
論文 参考訳(メタデータ) (2024-04-11T03:19:22Z) - Variational Autoencoders for exteroceptive perception in reinforcement learning-based collision avoidance [0.0]
Deep Reinforcement Learning (DRL) は有望な制御フレームワークとして登場した。
現在のDRLアルゴリズムは、ほぼ最適ポリシーを見つけるために不均等な計算資源を必要とする。
本稿では,海洋制御システムにおける提案手法の総合的な探索について述べる。
論文 参考訳(メタデータ) (2024-03-31T09:25:28Z) - Toward collision-free trajectory for autonomous and pilot-controlled
unmanned aerial vehicles [1.018017727755629]
本研究は、高度衝突管理手法の開発において、PilotAware Ltdが入手した電子情報(EC)をより活用するものである。
DACM手法の利点は、空中衝突を避けるための広範囲なシミュレーションと実世界のフィールドテストによって実証されてきた。
論文 参考訳(メタデータ) (2023-09-18T18:24:31Z) - Learned Risk Metric Maps for Kinodynamic Systems [54.49871675894546]
本研究では,高次元力学系のコヒーレントリスクメトリクスをリアルタイムに推定するための学習型リスクメトリクスマップを提案する。
LRMMモデルは設計と訓練が簡単で、障害セットの手続き的生成、状態と制御のサンプリング、および関数近似器の教師付きトレーニングのみを必要とする。
論文 参考訳(メタデータ) (2023-02-28T17:51:43Z) - Reinforcement Learning-Based Air Traffic Deconfliction [7.782300855058585]
本研究は,2機の水平分離を自動化することに焦点を当て,障害物回避問題を2次元サロゲート最適化課題として提示する。
強化学習(RL)を用いて、回避ポリシーを最適化し、ダイナミクス、インタラクション、意思決定をモデル化する。
提案システムは,安全要件を満たす高速かつ達成可能な回避軌道を生成する。
論文 参考訳(メタデータ) (2023-01-05T00:37:20Z) - Smooth Trajectory Collision Avoidance through Deep Reinforcement
Learning [0.0]
本稿では,DRLに基づくナビゲーションソリューションにおける2つの重要な問題に対処するために,エージェントの状態と報酬関数の設計を提案する。
我々のモデルは、衝突の可能性を著しく低減しつつ、UAVのスムーズな飛行を確保するために、マージンの報酬と滑らかさの制約に依存している。
論文 参考訳(メタデータ) (2022-10-12T16:27:32Z) - Obstacle Avoidance for UAS in Continuous Action Space Using Deep
Reinforcement Learning [9.891207216312937]
小型無人航空機の障害物回避は将来の都市空輸の安全に不可欠である。
本稿では, PPO(Proximal Policy Optimization)に基づく深層強化学習アルゴリズムを提案する。
その結果,提案モデルが正確かつ堅牢なガイダンスを提供し,99%以上の成功率で競合を解消できることが示唆された。
論文 参考訳(メタデータ) (2021-11-13T04:44:53Z) - Improving Robustness of Reinforcement Learning for Power System Control
with Adversarial Training [71.7750435554693]
電力系統制御のために提案された最先端のRLエージェントが敵攻撃に対して脆弱であることを示す。
具体的には、敵のマルコフ決定プロセスを用いて攻撃方針を学習し、攻撃の有効性を実証する。
本稿では,RLエージェントの攻撃に対する堅牢性を高め,実行不可能な運用上の決定を回避するために,敵の訓練を利用することを提案する。
論文 参考訳(メタデータ) (2021-10-18T00:50:34Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
本稿では,AVの最適決定を支援するために,マルコフ決定プロセス(MDP)に基づくインテリジェントな最適化フレームワークを提案する。
そこで我々は,近年の深層強化学習技術を活用した効果的な学習アルゴリズムを開発し,AVの最適方針を見出す。
提案手法は,従来の深部強化学習手法と比較して,AVによる障害物ミス検出確率を最大67%削減することを示す。
論文 参考訳(メタデータ) (2021-05-28T08:45:37Z) - Cautious Adaptation For Reinforcement Learning in Safety-Critical
Settings [129.80279257258098]
都市運転のような現実の安全クリティカルな目標設定における強化学習(RL)は危険である。
非安全クリティカルな「ソース」環境でエージェントが最初に訓練する「安全クリティカル適応」タスクセットを提案する。
多様な環境における事前経験がリスクを見積もるためにエージェントに装備するという直感に基づくソリューションアプローチであるCARLを提案する。
論文 参考訳(メタデータ) (2020-08-15T01:40:59Z) - Optimization-driven Deep Reinforcement Learning for Robust Beamforming
in IRS-assisted Wireless Communications [54.610318402371185]
Intelligent Reflecting Surface (IRS)は、マルチアンテナアクセスポイント(AP)から受信機へのダウンリンク情報伝達を支援する有望な技術である。
我々は、APのアクティブビームフォーミングとIRSのパッシブビームフォーミングを共同最適化することで、APの送信電力を最小化する。
過去の経験からビームフォーミング戦略に適応できる深層強化学習(DRL)手法を提案する。
論文 参考訳(メタデータ) (2020-05-25T01:42:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。