論文の概要: Derivation of Closed Form of Expected Improvement for Gaussian Process Trained on Log-Transformed Objective
- arxiv url: http://arxiv.org/abs/2411.18095v1
- Date: Wed, 27 Nov 2024 07:13:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 15:28:51.738126
- Title: Derivation of Closed Form of Expected Improvement for Gaussian Process Trained on Log-Transformed Objective
- Title(参考訳): 対数変換対象物を用いたガウス過程のクローズドフォーム改善の導出
- Authors: Shuhei Watanabe,
- Abstract要約: 期待されている改善(EI)は、ベイズ最適化において最も広く用いられている獲得関数である。
数値精度に敏感なため、EIの性能を高めることはしばしば困難である。
- 参考スコア(独自算出の注目度): 2.6868760903545863
- License:
- Abstract: Expected Improvement (EI) is arguably the most widely used acquisition function in Bayesian optimization. However, it is often challenging to enhance the performance with EI due to its sensitivity to numerical precision. Previously, Hutter et al. (2009) tackled this problem by using Gaussian process trained on the log-transformed objective function and it was reported that this trick improves the predictive accuracy of GP, leading to substantially better performance. Although Hutter et al. (2009) offered the closed form of their EI, its intermediate derivation has not been provided so far. In this paper, we give a friendly derivation of their proposition.
- Abstract(参考訳): 期待されている改善(EI)は、ベイズ最適化において最も広く用いられている獲得関数である。
しかし、数値精度に敏感なため、EIの性能を高めることはしばしば困難である。
以前、Hutter et al (2009) はログ変換対象関数で訓練されたガウス過程を用いてこの問題に取り組み、この手法がGPの予測精度を向上させることが報告され、性能が大幅に向上した。
Hutter et al (2009) は EI の閉形式を提供したが、その中間導出は今のところ提供されていない。
本稿では,それらの命題の親しみやすい導出を行う。
関連論文リスト
- Sample-efficient Bayesian Optimisation Using Known Invariances [56.34916328814857]
バニラと制約付きBOアルゴリズムは、不変目的を最適化する際の非効率性を示す。
我々はこれらの不変カーネルの最大情報ゲインを導出する。
核融合炉用電流駆動システムの設計に本手法を用い, 高性能溶液の探索を行った。
論文 参考訳(メタデータ) (2024-10-22T12:51:46Z) - Unexpected Improvements to Expected Improvement for Bayesian
Optimization [23.207497480389208]
提案するLogEIは,メンバが標準値と同一あるいはほぼ等しい最適値を持つが,数値的最適化が極めて容易な,新たな獲得関数群である。
実験結果から,LogEIファミリーの獲得関数は,標準関数の最適化性能を大幅に向上し,最近の最先端の獲得関数の性能に匹敵する結果が得られた。
論文 参考訳(メタデータ) (2023-10-31T17:59:56Z) - Efficient Robust Bayesian Optimization for Arbitrary Uncertain Inputs [13.578262325229161]
本稿では,任意の入力不確実性の下で一貫して動作するロバストな最適化アルゴリズムであるAIRBOを提案する。
提案手法は,最大平均離散度(MMD)を用いてガウス過程を有効化することにより任意の分布の不確実な入力を直接モデル化し,さらにNystrom近似による後部推論を高速化する。
MMD推定誤差と合成関数および実問題に関する広範な実験により,本手法が様々な入力不確実性に対処し,最先端の性能を実現することができることを示す。
論文 参考訳(メタデータ) (2023-10-31T03:29:31Z) - A Corrected Expected Improvement Acquisition Function Under Noisy
Observations [22.63212972670109]
期待される改善の順序 (EI) はベイズ最適化において最も広く用いられている政策の一つである。
既存の解に関する不確実性は、多くの解析的EI型法で無視されることが多い。
本稿では,ガウス過程(GP)モデルによって提供される共分散情報を組み込むことで,その閉形式表現を補正するEIの修正を提案する。
論文 参考訳(メタデータ) (2023-10-08T13:50:39Z) - Robust Bayesian Target Value Optimization [6.606745253604263]
我々は,ブラックボックス関数の出力が期待される2乗誤差の意味で,目標値に可能な限り近いようなブラックボックス関数への入力を求める問題を考察する。
我々は、期待される改善、改善の確率、低い信頼境界といった共通の基準に対して、アレター効果が既知の分散を持つガウス的であることを仮定して、取得関数を導出する。
論文 参考訳(メタデータ) (2023-01-11T07:44:59Z) - Regret Bounds for Expected Improvement Algorithms in Gaussian Process
Bandit Optimization [63.8557841188626]
期待されている改善(EI)アルゴリズムは、不確実性の下で最適化するための最も一般的な戦略の1つである。
本稿では,GP予測平均を通した標準既存値を持つEIの変種を提案する。
我々のアルゴリズムは収束し、$mathcal O(gamma_TsqrtT)$の累積後悔境界を達成することを示す。
論文 参考訳(メタデータ) (2022-03-15T13:17:53Z) - Likelihood-Free Inference with Deep Gaussian Processes [70.74203794847344]
サーロゲートモデルは、シミュレータ評価の回数を減らすために、可能性のない推論に成功している。
本稿では,より不規則な対象分布を扱えるディープガウス過程(DGP)サロゲートモデルを提案する。
本実験は,DGPがマルチモーダル分布を持つ目的関数上でGPよりも優れ,単調な場合と同等の性能を維持できることを示す。
論文 参考訳(メタデータ) (2020-06-18T14:24:05Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
我々は、バリエーションのホストが、我々が提案する統一されたフレームワークでカバー可能であることを示す。
本稿では,この手法の収束性を証明し,ResNet,LSTM,Transformer上での経験的性能を厳格に評価する。
論文 参考訳(メタデータ) (2020-06-10T08:22:41Z) - Randomised Gaussian Process Upper Confidence Bound for Bayesian
Optimisation [60.93091603232817]
改良されたガウス過程上信頼境界(GP-UCB)取得関数を開発した。
これは、分布から探索・探索トレードオフパラメータをサンプリングすることによって行われる。
これにより、期待されるトレードオフパラメータが、関数のベイズ的後悔に縛られることなく、問題によりよく適合するように変更できることが証明される。
論文 参考訳(メタデータ) (2020-06-08T00:28:41Z) - Global Optimization of Gaussian processes [52.77024349608834]
少数のデータポイントで学習したガウス過程を訓練した空間定式化を提案する。
このアプローチはまた、より小さく、計算的にもより安価なサブソルバを低いバウンディングに導く。
提案手法の順序の順序による時間収束を,総じて低減する。
論文 参考訳(メタデータ) (2020-05-21T20:59:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。