論文の概要: Abductive Symbolic Solver on Abstraction and Reasoning Corpus
- arxiv url: http://arxiv.org/abs/2411.18158v1
- Date: Wed, 27 Nov 2024 09:09:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 15:27:07.790111
- Title: Abductive Symbolic Solver on Abstraction and Reasoning Corpus
- Title(参考訳): 抽象・推論コーパスにおける帰納的シンボリック・ソルバー
- Authors: Mintaek Lim, Seokki Lee, Liyew Woletemaryam Abitew, Sundong Kim,
- Abstract要約: 人間は自分の観察と仮説に基づいて視覚的推論タスクを解く。
これまでのアプローチはグリッド移行のみに重点を置いていたため、AIが合理的で人間的なソリューションを提供するには不十分だった。
本稿では,観測されたデータを知識グラフに象徴的に表現し,ソリューション生成に使用できるコア知識を抽出する新しいフレームワークを提案する。
- 参考スコア(独自算出の注目度): 5.903948032748941
- License:
- Abstract: This paper addresses the challenge of enhancing artificial intelligence reasoning capabilities, focusing on logicality within the Abstraction and Reasoning Corpus (ARC). Humans solve such visual reasoning tasks based on their observations and hypotheses, and they can explain their solutions with a proper reason. However, many previous approaches focused only on the grid transition and it is not enough for AI to provide reasonable and human-like solutions. By considering the human process of solving visual reasoning tasks, we have concluded that the thinking process is likely the abductive reasoning process. Thus, we propose a novel framework that symbolically represents the observed data into a knowledge graph and extracts core knowledge that can be used for solution generation. This information limits the solution search space and helps provide a reasonable mid-process. Our approach holds promise for improving AI performance on ARC tasks by effectively narrowing the solution space and providing logical solutions grounded in core knowledge extraction.
- Abstract(参考訳): 本稿では, 抽象推論コーパス(ARC)における論理性に着目し, 人工知能推論能力の向上という課題に対処する。
人間は観察と仮説に基づいてこのような視覚的推論タスクを解決し、適切な理由から解法を説明することができる。
しかし、これまでの多くのアプローチはグリッド移行のみに焦点を当てており、AIが合理的で人間的なソリューションを提供するのに十分ではない。
視覚的推論タスクを解く人間のプロセスを考えることで、思考プロセスが帰納的推論プロセスである可能性が高いと結論づけた。
そこで本研究では,観測されたデータを知識グラフに象徴的に表現し,ソリューション生成に使用できるコア知識を抽出する新しいフレームワークを提案する。
この情報は、解探索空間を制限し、合理的な中間処理を提供するのに役立つ。
提案手法は,解空間を効果的に狭め,コア知識抽出を基礎とした論理解を提供することにより,ARCタスクにおけるAI性能の向上を約束する。
関連論文リスト
- Conceptual and Unbiased Reasoning in Language Models [98.90677711523645]
本稿では,抽象的質問に対する概念的推論をモデルに強制する,新しい概念化フレームワークを提案する。
既存の大規模言語モデルは概念的推論では不足しており、様々なベンチマークでは9%から28%に低下している。
ハイレベルな抽象的推論が不偏で一般化可能な意思決定の鍵となるので、モデルがどのように改善できるかについて議論する。
論文 参考訳(メタデータ) (2024-03-30T00:53:53Z) - Language Models can be Logical Solvers [99.40649402395725]
論理解法の推論過程を直接エミュレートする新しい言語モデルであるLoGiPTを導入する。
LoGiPTは、導出的ソルバの見えない推論過程を明らかにして精錬することから導かれる、新しく構築された命令チューニングデータセットに基づいて微調整される。
論文 参考訳(メタデータ) (2023-11-10T16:23:50Z) - Representation Engineering: A Top-Down Approach to AI Transparency [132.0398250233924]
表現工学の新たな領域(RepE)を特定し,特徴付ける
RepEは、神経細胞や回路ではなく、人口レベルの表現を解析の中心に置く。
これらの手法が、広範囲の安全関連問題に対してどのようにトラクションを提供するかを紹介する。
論文 参考訳(メタデータ) (2023-10-02T17:59:07Z) - Learning Differentiable Logic Programs for Abstract Visual Reasoning [18.82429807065658]
微分フォワード推論は、勾配に基づく機械学習パラダイムと推論を統合するために開発された。
NEUMANNはグラフベースの微分可能フォワード推論器で、メッセージをメモリ効率のよい方法で送信し、構造化プログラムを関手で処理する。
NEUMANNは視覚的推論タスクを効率的に解き、神経、象徴的、神経-象徴的ベースラインを上回ります。
論文 参考訳(メタデータ) (2023-07-03T11:02:40Z) - Learning Iterative Reasoning through Energy Minimization [77.33859525900334]
ニューラルネットワークを用いた反復推論のための新しいフレームワークを提案する。
すべての出力に対してエネルギーランドスケープをパラメータ化するために、ニューラルネットワークをトレーニングします。
エネルギー最小化ステップとして反復推論の各ステップを実装し,最小限のエネルギー解を求める。
論文 参考訳(メタデータ) (2022-06-30T17:44:20Z) - Joint Abductive and Inductive Neural Logical Reasoning [44.36651614420507]
結合誘導型および誘導型ニューラル論理推論(AI-NLR)の問題点を定式化する。
まず、概念の源を提供するために、記述論理に基づく存在論的公理を組み込む。
そして、概念とクエリをファジィ集合として表現し、すなわち、要素がメンバシップの度合いを持つ集合を概念とクエリをエンティティでブリッジする。
論文 参考訳(メタデータ) (2022-05-29T07:41:50Z) - Neural-guided, Bidirectional Program Search for Abstraction and
Reasoning [3.2348834229786885]
本稿では, ブルートフォース探索をベースとしない抽象化と推論の2つのアプローチの基礎を定めている。
まずDreamCoderと呼ばれる既存のプログラム合成システムを用いて、これまで解決されてきたタスクからシンボリックな抽象化を作成する。
第二に、人間がARCに近づく方法によって動機付けられた推論アルゴリズムを設計する。
論文 参考訳(メタデータ) (2021-10-22T00:41:47Z) - Abstract Reasoning via Logic-guided Generation [65.92805601327649]
抽象的推論、すなわち、与えられた観測から複雑なパターンを推測することは、人工知能の中心的な構成要素である。
本稿では,後者のアプローチの枠組みを設計し,人工知能と人間の知能のギャップを埋めることを目的とする。
本稿では,提案する論理の最適化問題として,抽象的推論を削減した新しい生成型DNNフレームワークであるLoGeを提案する。
論文 参考訳(メタデータ) (2021-07-22T07:28:24Z) - AR-LSAT: Investigating Analytical Reasoning of Text [57.1542673852013]
テキストの分析的推論の課題を研究し、1991年から2016年までのロースクール入学試験からの質問からなる新しいデータセットを紹介します。
我々は,この課題をうまくこなすために必要な知識理解と推論能力を分析する。
論文 参考訳(メタデータ) (2021-04-14T02:53:32Z) - Exploring the Nuances of Designing (with/for) Artificial Intelligence [0.0]
我々は,AIの設計において,アルゴリズムと社会の問題に同時に対処する手段として,インフラストラクチャの構築について検討する。
アルゴリズム的なソリューションも、純粋にヒューマニズム的なソリューションも、AIの狭い状態において完全に望ましくない結果をもたらすには十分ではない。
論文 参考訳(メタデータ) (2020-10-22T20:34:35Z) - Information-Theoretic Abstractions for Planning in Agents with
Computational Constraints [16.565205172451662]
本稿では,元空間の抽象化に関する問題を解くことで,環境内の経路計画問題を体系的に近似する方法を示す。
数値的な例を提示し, アプローチの有用性を示し, 理論的知見を裏付ける。
論文 参考訳(メタデータ) (2020-05-19T17:32:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。