論文の概要: BloomWise: Enhancing Problem-Solving capabilities of Large Language Models using Bloom's-Taxonomy-Inspired Prompts
- arxiv url: http://arxiv.org/abs/2410.04094v2
- Date: Thu, 07 Aug 2025 15:40:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-08 18:59:39.544374
- Title: BloomWise: Enhancing Problem-Solving capabilities of Large Language Models using Bloom's-Taxonomy-Inspired Prompts
- Title(参考訳): BloomWise: Bloom's-Taxonomy-Inspired Promptsを用いた大規模言語モデルの問題解決機能向上
- Authors: Maria-Eleni Zoumpoulidi, Georgios Paraskevopoulos, Alexandros Potamianos,
- Abstract要約: BloomWiseは認知にインスパイアされた大規模言語モデル(LLM)のプロンプト技術である
解法をより説明しやすいものにしながら、数学的問題解決におけるLLMの性能を高めるように設計されている。
- 参考スコア(独自算出の注目度): 59.83547898874152
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the remarkable capabilities of large language models (LLMs) across a range of tasks, mathematical reasoning remains a challenging frontier. Motivated by the observation that humans learn more effectively when prompted not what to think but how to think, we introduce BloomWise, a cognitively-inspired prompting technique designed to enhance LLMs' performance on mathematical problem solving while making their solutions more explainable. BloomWise encourages LLMs to generate solutions - in the form of explanations - by progressing through a sequence of cognitive operations-from basic (e.g., remembering) to more advanced reasoning skills (e.g., evaluating) - mirroring how humans build understanding. The process iterates through these levels, halting early if a convergence criterion is met: specifically, if two or more consecutive levels yield the same answer, the solution from the earliest such level is output; otherwise, the process continues until all levels are completed. Through extensive experiments across five popular math reasoning datasets, we demonstrate the effectiveness of BloomWise. We also present comprehensive ablation studies to analyze the strengths of each component within our system.
- Abstract(参考訳): 大きな言語モデル(LLM)の様々なタスクにおける顕著な能力にもかかわらず、数学的推論は依然として挑戦的なフロンティアである。
そこで我々は,LLMの数学的問題解決における性能向上を図ったBloomWiseを紹介し,その解法をより説明しやすいものにする。
BloomWise氏はLLMに、基本的な(例えば、記憶)からより高度な推論スキル(例えば、評価)までの一連の認知操作を通じて、人間がどのように理解を構築するかを反映することによって、ソリューションを生成することを奨励している。
このプロセスはこれらのレベルを反復し、収束基準が満たされれば早期に停止する:具体的には、2つ以上の連続レベルが同じ答えを得る場合、最も早いレベルの解が出力され、そうでなければ、すべてのレベルが完了するまでプロセスは継続される。
5つの一般的な数学推論データセットの広範な実験を通じて、ブルームワイズの有効性を実証する。
また、システム内の各コンポーネントの強度を分析するための総合的アブレーション研究についても紹介する。
関連論文リスト
- Fast or Slow? Integrating Fast Intuition and Deliberate Thinking for Enhancing Visual Question Answering [11.271123465926301]
マルチモーダルな大言語モデル(MLLM)は、ビジュアル質問回答において複雑な推論タスクに苦戦している。
質問の複雑さに動的に適応するプラグイン・アンド・プレイアプローチである FOCUS を提案する。
ScienceQA、TextQA、VizWiz、MMEの4つのベンチマークの実験では、FOCUSはオープンソースとブラックボックス両方のMLLMの性能を一貫して改善している。
論文 参考訳(メタデータ) (2025-06-01T03:15:29Z) - A Survey of Slow Thinking-based Reasoning LLMs using Reinforced Learning and Inference-time Scaling Law [29.763080554625216]
本調査は「スロー思考」を模倣した大規模言語モデル(LLM)の最近の進歩を考察する。
LLMは、数学の推論、視覚的推論、診断、マルチエージェントの議論などの複雑なタスクの間、動的に計算資源をスケーリングすることに焦点を当てている。
論文 参考訳(メタデータ) (2025-05-05T14:14:59Z) - A Survey of Frontiers in LLM Reasoning: Inference Scaling, Learning to Reason, and Agentic Systems [93.8285345915925]
推論(Reasoning)は、論理的推論、問題解決、意思決定を可能にする基本的な認知プロセスである。
大規模言語モデル(LLM)の急速な進歩により、推論は高度なAIシステムを区別する重要な能力として浮上した。
我々は,(1)推論が達成される段階を定義するレジーム,(2)推論プロセスに関与するコンポーネントを決定するアーキテクチャの2つの側面に沿って既存の手法を分類する。
論文 参考訳(メタデータ) (2025-04-12T01:27:49Z) - Dancing with Critiques: Enhancing LLM Reasoning with Stepwise Natural Language Self-Critique [66.94905631175209]
我々は、段階的に自然言語の自己批判(PANEL)を行う新しい推論時間スケーリング手法を提案する。
ステップレベルの探索プロセスのガイドとして、自己生成の自然言語批判をフィードバックとして採用している。
このアプローチは、タスク固有の検証と関連するトレーニングオーバーヘッドの必要性を回避します。
論文 参考訳(メタデータ) (2025-03-21T17:59:55Z) - Towards Understanding Multi-Round Large Language Model Reasoning: Approximability, Learnability and Generalizability [18.54202114336492]
マルチラウンド自動回帰モデルの近似,学習可能性,一般化特性について検討する。
有限コンテキストウィンドウを持つ変換器はチューリング計算可能関数のステップに対する普遍近似器であることを示す。
我々はPAC学習をシーケンス生成に拡張し、シーケンス長がモデルのコンテキストウィンドウを超えた場合でも、マルチラウンド生成が学習可能であることを示す。
論文 参考訳(メタデータ) (2025-03-05T02:50:55Z) - TextGames: Learning to Self-Play Text-Based Puzzle Games via Language Model Reasoning [26.680686158061192]
推論は大規模言語モデル(LLM)の基本機能である
本稿では,テキストベースのゲームで LLM を評価するためのベンチマークである TextGames を紹介する。
以上の結果から,LSMは最も容易かつ中程度の問題に対処する能力を示すが,より困難な課題に直面することが明らかとなった。
論文 参考訳(メタデータ) (2025-02-25T18:26:48Z) - LLM Reasoning Engine: Specialized Training for Enhanced Mathematical Reasoning [7.512199306943756]
数学的推論タスクにおける大規模言語モデルの能力を高めるための新しい手法を提案する。
このギャップを埋める必要性に感銘を受け、私たちのアプローチには質問パラフレーズ戦略が組み込まれています。
モデルの学習プロセスを導くために 専門的な訓練目的が 使われています。
論文 参考訳(メタデータ) (2024-12-28T17:48:33Z) - Supervised Chain of Thought [5.389461633686935]
Chain of Thought (CoT)は複雑な推論タスクを解決するための有望なアプローチを提供する。
ワンプロンプト・フォー・オールアプローチは、正しい推論ステップを生成するためにモデルに重大な課題をもたらす。
タスク固有の監督が、プロンプト空間を正確にナビゲートし、最適な性能を達成するためにいかに重要であるかを示す。
論文 参考訳(メタデータ) (2024-10-18T06:25:27Z) - Deconfounded Causality-aware Parameter-Efficient Fine-Tuning for Problem-Solving Improvement of LLMs [12.48241058167222]
大規模言語モデル(LLM)は、人間の指示に基づいて様々なタスクに取り組む際に、顕著な効率性を示した。
しかし、数学や物理学の限界など、推論を必要とするタスクに苦しむことが研究によって明らかになっている。
このことは、LLMが組み込み知識を本当に理解しているか、それとも、コンテンツに対する真の理解なしにトークン分布を複製することを学ぶだけなのかという疑問を提起する。
モデルの推論能力を高めるために,新しいパラメータ効率細調整法であるDecon Causal Adaptation (DCA)を提案する。
論文 参考訳(メタデータ) (2024-09-04T13:17:09Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTRは、ヒトに適応し、多目的な意思決定を提供する新しいニューロシンボリックアーキテクチャである。
我々のフレームワークは、ACT-Rの内部決定過程の知識を潜在神経表現として抽出し、組み込む。
デザイン・フォー・マニュファクチャリング・タスクに関する我々の実験は、タスク性能の向上と基礎的意思決定能力の向上を両立させたものである。
論文 参考訳(メタデータ) (2024-08-17T11:49:53Z) - Meta Reasoning for Large Language Models [58.87183757029041]
大規模言語モデル(LLM)の新規かつ効率的なシステムプロセッシング手法であるメタ推論プロンプト(MRP)を導入する。
MRPは、各タスクの特定の要求に基づいて異なる推論メソッドを動的に選択し、適用するようLLMに誘導する。
総合的なベンチマークによりMPPの有効性を評価する。
論文 参考訳(メタデータ) (2024-06-17T16:14:11Z) - Improving Complex Reasoning over Knowledge Graph with Logic-Aware Curriculum Tuning [89.89857766491475]
カリキュラムベースの論理認識型チューニングフレームワークであるLACTを提案する。
具体的には、任意の一階論理クエリをバイナリツリー分解によって拡張する。
広く使われているデータセットに対する実験では、LATは高度な手法よりも大幅に改善(平均+5.5% MRRスコア)し、新しい最先端技術を実現している。
論文 参考訳(メタデータ) (2024-05-02T18:12:08Z) - Reinforcement Learning Problem Solving with Large Language Models [0.0]
大規模言語モデル (LLM) には膨大な量の世界知識があり、自然言語処理 (NLP) タスクの性能向上のために様々な分野に応用できるようになっている。
これはまた、人間とAIシステム間の会話に基づく対話による、意図した問題を解決するための、よりアクセスしやすいパラダイムを促進する。
研究科学者」と「レガリー・マター・インテーク」の2つの詳細なケーススタディを通して、我々のアプローチの実践性を示す。
論文 参考訳(メタデータ) (2024-04-29T12:16:08Z) - Cantor: Inspiring Multimodal Chain-of-Thought of MLLM [83.6663322930814]
視覚的コンテキスト獲得と論理的推論の集約は、視覚的推論タスクに取り組む上で重要であると我々は主張する。
我々はCantorと呼ばれる革新的なマルチモーダルCoTフレームワークを提案し、その特徴は知覚決定アーキテクチャである。
提案手法の有効性を実証し,マルチモーダルCoT性能の大幅な向上を示した。
論文 参考訳(メタデータ) (2024-04-24T17:59:48Z) - Distilling Algorithmic Reasoning from LLMs via Explaining Solution Programs [2.3020018305241337]
大きな言語モデルの推論能力を改善する効果的な方法として、明確な推論経路を蒸留する手法が登場している。
本稿では, LLM から推論能力を抽出する手法を提案する。
提案実験は,ReasonerがCoderによるプログラム実装をより効果的にガイドできることを示す。
論文 参考訳(メタデータ) (2024-04-11T22:19:50Z) - Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adapt adjust of language model based on specific downstream task。
提案手法は,様々なバックボーンやベンチマーク上での最先端性能を実証し,最小限の忘れを伴い,フルセットおよび少数ショットのシナリオにおいて効果的な連続学習を実現する。
論文 参考訳(メタデータ) (2024-04-11T04:22:15Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
大規模言語モデル(LLM)は、主に様々なテキスト理解および生成タスクにおける全体的なパフォーマンスによって評価される。
FAC$2$E, FAC$2$Eについて述べる。
論文 参考訳(メタデータ) (2024-02-29T21:05:37Z) - Do Language Models Exhibit the Same Cognitive Biases in Problem Solving as Human Learners? [140.9751389452011]
本研究では,大言語モデル(LLM)の偏りを,算術語問題を解く際に,子どもに知られているものと関連づけて検討する。
我々は,これらの各テストに対して,問題特徴のきめ細かい制御を可能にするニューロシンボリックアプローチを用いて,新しい単語問題を生成する。
論文 参考訳(メタデータ) (2024-01-31T18:48:20Z) - Corex: Pushing the Boundaries of Complex Reasoning through Multi-Model Collaboration [83.4031923134958]
Corexは,大規模言語モデルを自律エージェントに変換する,新たな汎用戦略スイートだ。
人間の振る舞いにインスパイアされたCorexは、Debate、Review、Retrieveモードといった多様なコラボレーションパラダイムによって構成されている。
我々は,複数のLDMを協調的に演奏することで,既存の手法に比べて性能が著しく向上することが実証された。
論文 参考訳(メタデータ) (2023-09-30T07:11:39Z) - Automatically Correcting Large Language Models: Surveying the landscape
of diverse self-correction strategies [104.32199881187607]
大規模言語モデル(LLM)は、幅広いNLPタスクで顕著な性能を示した。
これらの欠陥を正すための有望なアプローチは自己補正であり、LLM自体が自身の出力で問題を修正するために誘導される。
本稿では,この新技術について概観する。
論文 参考訳(メタデータ) (2023-08-06T18:38:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。