XR-MBT: Multi-modal Full Body Tracking for XR through Self-Supervision with Learned Depth Point Cloud Registration
- URL: http://arxiv.org/abs/2411.18377v1
- Date: Wed, 27 Nov 2024 14:25:32 GMT
- Title: XR-MBT: Multi-modal Full Body Tracking for XR through Self-Supervision with Learned Depth Point Cloud Registration
- Authors: Denys Rozumnyi, Nadine Bertsch, Othman Sbai, Filippo Arcadu, Yuhua Chen, Artsiom Sanakoyeu, Manoj Kumar, Catherine Herold, Robin Kips,
- Abstract summary: XR-MBT tracks legs in XR for the first time, whereas traditional synthesis approaches based on partial body tracking are blind.
We demonstrate how current 3-point motion synthesis models can be extended to point cloud modalities.
- Score: 19.874691210555472
- License:
- Abstract: Tracking the full body motions of users in XR (AR/VR) devices is a fundamental challenge to bring a sense of authentic social presence. Due to the absence of dedicated leg sensors, currently available body tracking methods adopt a synthesis approach to generate plausible motions given a 3-point signal from the head and controller tracking. In order to enable mixed reality features, modern XR devices are capable of estimating depth information of the headset surroundings using available sensors combined with dedicated machine learning models. Such egocentric depth sensing cannot drive the body directly, as it is not registered and is incomplete due to limited field-of-view and body self-occlusions. For the first time, we propose to leverage the available depth sensing signal combined with self-supervision to learn a multi-modal pose estimation model capable of tracking full body motions in real time on XR devices. We demonstrate how current 3-point motion synthesis models can be extended to point cloud modalities using a semantic point cloud encoder network combined with a residual network for multi-modal pose estimation. These modules are trained jointly in a self-supervised way, leveraging a combination of real unregistered point clouds and simulated data obtained from motion capture. We compare our approach against several state-of-the-art systems for XR body tracking and show that our method accurately tracks a diverse range of body motions. XR-MBT tracks legs in XR for the first time, whereas traditional synthesis approaches based on partial body tracking are blind.
Related papers
- Realistic Full-Body Tracking from Sparse Observations via Joint-Level
Modeling [13.284947022380404]
We propose a two-stage framework that can obtain accurate and smooth full-body motions with three tracking signals of head and hands only.
Our framework explicitly models the joint-level features in the first stage and utilizes them astemporal tokens for alternating spatial and temporal transformer blocks to capture joint-level correlations in the second stage.
With extensive experiments on the AMASS motion dataset and real-captured data, we show our proposed method can achieve more accurate and smooth motion compared to existing approaches.
arXiv Detail & Related papers (2023-08-17T08:27:55Z) - Avatars Grow Legs: Generating Smooth Human Motion from Sparse Tracking
Inputs with Diffusion Model [18.139630622759636]
We present AGRoL, a novel conditional diffusion model specifically designed to track full bodies given sparse upper-body tracking signals.
Our model is based on a simple multi-layer perceptron (MLP) architecture and a novel conditioning scheme for motion data.
Unlike common diffusion architectures, our compact architecture can run in real-time, making it suitable for online body-tracking applications.
arXiv Detail & Related papers (2023-04-17T19:35:13Z) - QuestSim: Human Motion Tracking from Sparse Sensors with Simulated
Avatars [80.05743236282564]
Real-time tracking of human body motion is crucial for immersive experiences in AR/VR.
We present a reinforcement learning framework that takes in sparse signals from an HMD and two controllers.
We show that a single policy can be robust to diverse locomotion styles, different body sizes, and novel environments.
arXiv Detail & Related papers (2022-09-20T00:25:54Z) - A Spatio-Temporal Multilayer Perceptron for Gesture Recognition [70.34489104710366]
We propose a multilayer state-weighted perceptron for gesture recognition in the context of autonomous vehicles.
An evaluation of TCG and Drive&Act datasets is provided to showcase the promising performance of our approach.
We deploy our model to our autonomous vehicle to show its real-time capability and stable execution.
arXiv Detail & Related papers (2022-04-25T08:42:47Z) - A Lightweight and Detector-free 3D Single Object Tracker on Point Clouds [50.54083964183614]
It is non-trivial to perform accurate target-specific detection since the point cloud of objects in raw LiDAR scans is usually sparse and incomplete.
We propose DMT, a Detector-free Motion prediction based 3D Tracking network that totally removes the usage of complicated 3D detectors.
arXiv Detail & Related papers (2022-03-08T17:49:07Z) - Exploring Simple 3D Multi-Object Tracking for Autonomous Driving [10.921208239968827]
3D multi-object tracking in LiDAR point clouds is a key ingredient for self-driving vehicles.
Existing methods are predominantly based on the tracking-by-detection pipeline and inevitably require a matching step for the detection association.
We present SimTrack to simplify the hand-crafted tracking paradigm by proposing an end-to-end trainable model for joint detection and tracking from raw point clouds.
arXiv Detail & Related papers (2021-08-23T17:59:22Z) - Monocular Quasi-Dense 3D Object Tracking [99.51683944057191]
A reliable and accurate 3D tracking framework is essential for predicting future locations of surrounding objects and planning the observer's actions in numerous applications such as autonomous driving.
We propose a framework that can effectively associate moving objects over time and estimate their full 3D bounding box information from a sequence of 2D images captured on a moving platform.
arXiv Detail & Related papers (2021-03-12T15:30:02Z) - Unified Multi-Modal Landmark Tracking for Tightly Coupled
Lidar-Visual-Inertial Odometry [5.131684964386192]
We present an efficient multi-sensor odometry system for mobile platforms that jointly optimize visual, lidar, and inertial information.
New method to extract 3D line and planar primitives from lidar point clouds is presented.
System has been tested on a variety of platforms and scenarios, including underground exploration with a legged robot and outdoor scanning with a dynamically moving handheld device.
arXiv Detail & Related papers (2020-11-13T09:54:03Z) - UNOC: Understanding Occlusion for Embodied Presence in Virtual Reality [12.349749717823736]
In this paper, we propose a new data-driven framework for inside-out body tracking.
We first collect a large-scale motion capture dataset with both body and finger motions.
We then simulate the occlusion patterns in head-mounted camera views on the captured ground truth using a ray casting algorithm and learn a deep neural network to infer the occluded body parts.
arXiv Detail & Related papers (2020-11-12T09:31:09Z) - Towards Autonomous Driving: a Multi-Modal 360$^{\circ}$ Perception
Proposal [87.11988786121447]
This paper presents a framework for 3D object detection and tracking for autonomous vehicles.
The solution, based on a novel sensor fusion configuration, provides accurate and reliable road environment detection.
A variety of tests of the system, deployed in an autonomous vehicle, have successfully assessed the suitability of the proposed perception stack.
arXiv Detail & Related papers (2020-08-21T20:36:21Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
We propose an online path planning architecture that extends the model predictive control (MPC) formulation to consider future location uncertainties.
Our algorithm combines an object detection pipeline with a recurrent neural network (RNN) which infers the covariance of state estimates.
The robustness of our methods is validated on complex quadruped robot dynamics and can be generally applied to most robotic platforms.
arXiv Detail & Related papers (2020-07-28T07:34:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.