論文の概要: Optimal In-Network Distribution of Learning Functions for a Secure-by-Design Programmable Data Plane of Next-Generation Networks
- arxiv url: http://arxiv.org/abs/2411.18384v1
- Date: Wed, 27 Nov 2024 14:29:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 15:25:20.585152
- Title: Optimal In-Network Distribution of Learning Functions for a Secure-by-Design Programmable Data Plane of Next-Generation Networks
- Title(参考訳): 次世代ネットワークのセキュア設計可能データ平面のための学習関数の最適ネットワーク内分布
- Authors: Mattia Giovanni Spina, Edoardo Scalzo, Floriano De Rango, Francesca Guerriero, Antonio Iera,
- Abstract要約: 本稿では,分散侵入検知システム(IDS)をサポートするネットワーク内学習モデルの実装について検討する。
IDS のワークロードを最適に分散するモデルを提案する。これは "Strong Learner" (SL) モデルの軽量分散 "Weak Learner" (WL) モデルへの分割によるものである。
メタヒューリスティックなアプローチは、数学的モデルによって提供される正確な解によって必要となる長い計算時間を短縮するために提案される。
- 参考スコア(独自算出の注目度): 2.563180814294141
- License:
- Abstract: The rise of programmable data plane (PDP) and in-network computing (INC) paradigms paves the way for the development of network devices (switches, network interface cards, etc.) capable of performing advanced computing tasks. This allows to execute algorithms of various nature, including machine learning ones, within the network itself to support user and network services. In particular, this paper delves into the issue of implementing in-network learning models to support distributed intrusion detection systems (IDS). It proposes a model that optimally distributes the IDS workload, resulting from the subdivision of a "Strong Learner" (SL) model into lighter distributed "Weak Learner" (WL) models, among data plane devices; the objective is to ensure complete network security without excessively burdening their normal operations. Furthermore, a meta-heuristic approach is proposed to reduce the long computational time required by the exact solution provided by the mathematical model, and its performance is evaluated. The analysis conducted and the results obtained demonstrate the enormous potential of the proposed new approach to the creation of intelligent data planes that effectively act as a first line of defense against cyber attacks, with minimal additional workload on network devices.
- Abstract(参考訳): プログラマブルデータプレーン(PDP)とインネットワークコンピューティング(INC)パラダイムの台頭は、高度なコンピューティングタスクを実行することのできるネットワークデバイス(スイッチ、ネットワークインターフェースカードなど)の開発の道を開く。
これにより、ユーザおよびネットワークサービスをサポートするために、ネットワーク自体内で、機械学習を含むさまざまな性質のアルゴリズムを実行することができる。
特に,分散侵入検知システム(IDS)をサポートするネットワーク内学習モデルの実装について述べる。
本研究は,データプレーンデバイス間での"Strong Learner"(SL)モデルの軽量分散"Weak Learner"(WL)モデルへの分割により,IDSのワークロードを最適に分散するモデルを提案する。
さらに, メタヒューリスティックな手法を提案し, 数学的モデルによって提供される正確な解によって必要な計算時間を短縮し, その性能を評価する。
その結果,ネットワーク機器への負荷を最小限に抑えつつ,サイバー攻撃に対する防御の第一線として効果的に機能するインテリジェントデータプレーンの開発に向けた新たなアプローチの可能性を示した。
関連論文リスト
- Distributing Intelligence in 6G Programmable Data Planes for Effective In-Network Deployment of an Active Intrusion Detection System [2.563180814294141]
本研究の目的は、将来のプログラマブルネットワークの典型的なデータプレーン内のデバイスが%分類と異常検出能力を有し、完全に分散した方法で協調してML対応アクティブ侵入検知システムとして機能する破壊的パラダイムを提案することである。
報告された概念実証実験は、提案されたパラダイムによって、デバイス全体のCPUやRAMリソースの削減を図りながら、効果的かつ良好な精度で作業することが可能であることを実証している。
論文 参考訳(メタデータ) (2024-10-31T15:14:15Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - RACH Traffic Prediction in Massive Machine Type Communications [5.416701003120508]
本稿では,ALOHAネットワークにおけるバーストトラフィック予測に適した機械学習ベースのフレームワークを提案する。
我々は,mMTCネットワークから頻繁に収集されたデータを活用することでLSTMネットワークの状態を更新する,新しい低複雑さオンライン予測アルゴリズムを開発した。
本研究では,単一基地局と数千のデバイスを異なるトラフィック発生特性を持つグループに編成したネットワーク上でのフレームワークの性能を評価する。
論文 参考訳(メタデータ) (2024-05-08T17:28:07Z) - Auto-Train-Once: Controller Network Guided Automatic Network Pruning from Scratch [72.26822499434446]
オートトレインオース (Auto-Train-Once, ATO) は、DNNの計算コストと記憶コストを自動的に削減するために設計された、革新的なネットワークプルーニングアルゴリズムである。
総合的な収束解析と広範な実験を行い,本手法が様々なモデルアーキテクチャにおける最先端性能を実現することを示す。
論文 参考訳(メタデータ) (2024-03-21T02:33:37Z) - Towards Scalable Wireless Federated Learning: Challenges and Solutions [40.68297639420033]
効果的な分散機械学習フレームワークとして、フェデレートラーニング(FL)が登場します。
本稿では,ネットワーク設計と資源オーケストレーションの両面から,スケーラブルな無線FLを実現する上での課題と解決策について論じる。
論文 参考訳(メタデータ) (2023-10-08T08:55:03Z) - Robust, Deep, and Reinforcement Learning for Management of Communication
and Power Networks [6.09170287691728]
本論文は、まず、分散不確実性や逆データに対して汎用機械学習モデルを堅牢にするための原則的手法を開発する。
次に、この堅牢なフレームワークの上に構築し、グラフメソッドによる堅牢な半教師付き学習を設計します。
この論文の第2部は、次世代の有線および無線ネットワークの可能性を完全に解き放つことを意図している。
論文 参考訳(メタデータ) (2022-02-08T05:49:06Z) - Computational Intelligence and Deep Learning for Next-Generation
Edge-Enabled Industrial IoT [51.68933585002123]
エッジ対応産業用IoTネットワークにおける計算知能とディープラーニング(DL)の展開方法について検討する。
本稿では,新しいマルチエグジットベースフェデレーションエッジ学習(ME-FEEL)フレームワークを提案する。
特に、提案されたME-FEELは、非常に限られたリソースを持つ産業用IoTネットワークにおいて、最大32.7%の精度を達成することができる。
論文 参考訳(メタデータ) (2021-10-28T08:14:57Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
モバイルエッジコンピューティング(MEC)は、AIアプリケーションに自然なプラットフォームを提供します。
再構成可能なインテリジェントサーフェス(RIS)の助けを借りて、MECで機械学習タスクを実行するインフラストラクチャを提示します。
具体的には,モバイルユーザの送信パワー,基地局のビームフォーミングベクトル,risの位相シフト行列を共同で最適化することにより,参加ユーザの学習誤差を最小化する。
論文 参考訳(メタデータ) (2020-12-25T07:08:50Z) - Applying Graph-based Deep Learning To Realistic Network Scenarios [5.453745629140304]
本稿では,ネットワーク内のパスごとの平均遅延を正確に推定できるグラフベースの新しいディープラーニングモデルを提案する。
提案モデルでは,トレーニングフェーズ中に見つからないトポロジ,ルーティング構成,キュースケジューリングポリシ,トラフィック行列をうまく一般化することができる。
論文 参考訳(メタデータ) (2020-10-13T20:58:59Z) - A Privacy-Preserving Distributed Architecture for
Deep-Learning-as-a-Service [68.84245063902908]
本稿では,ディープラーニング・アズ・ア・サービスのための分散アーキテクチャを提案する。
クラウドベースのマシンとディープラーニングサービスを提供しながら、ユーザの機密データを保存できる。
論文 参考訳(メタデータ) (2020-03-30T15:12:03Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
まず,データ駆動型教師付き深層学習と深部強化学習をURLLCに適用する方法を概説する。
このようなオープンな問題に対処するために、デバイスインテリジェンス、エッジインテリジェンス、およびURLLCのためのクラウドインテリジェンスを可能にするマルチレベルアーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-02-22T14:38:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。