論文の概要: Politicians vs ChatGPT. A study of presuppositions in French and Italian political communication
- arxiv url: http://arxiv.org/abs/2411.18403v1
- Date: Wed, 27 Nov 2024 14:46:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 15:28:40.145350
- Title: Politicians vs ChatGPT. A study of presuppositions in French and Italian political communication
- Title(参考訳): 政治とチャットGPT : フランスとイタリアの政治コミュニケーションにおける前提条件の検討
- Authors: Davide Garassino, Vivana Masia, Nicola Brocca, Alice Delorme Benites,
- Abstract要約: 本研究は、暗黙のコミュニケーション、特に前置詞とその言論における機能に焦点を当てる。
本研究は,大規模言語モデルの実用的能力に関する新たな文献への貢献も目指している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper aims to provide a comparison between texts produced by French and Italian politicians on polarizing issues, such as immigration and the European Union, and their chatbot counterparts created with ChatGPT 3.5. In this study, we focus on implicit communication, in particular on presuppositions and their functions in discourse, which have been considered in the literature as a potential linguistic feature of manipulation. This study also aims to contribute to the emerging literature on the pragmatic competences of Large Language Models.
- Abstract(参考訳): 本稿では,フランスとイタリアの政治家が,移民や欧州連合などの問題を分極化するためのテキストと,ChatGPT 3.5で作成したチャットボットの比較を行う。
本研究では,暗黙的なコミュニケーション,特に前置詞とその言論における機能に着目し,その操作の潜在的な言語的特徴として文献で検討されている。
本研究は,大規模言語モデルの実用的能力に関する新たな文献への貢献も目指している。
関連論文リスト
- Measuring Bullshit in the Language Games played by ChatGPT [41.94295877935867]
生成的大言語モデル(LLM)は真理値と直接対応しないテキストを生成する。
LLMはフランクフルトの有名なモノグラフOn Bullshitに記述されている言語に類似している。
ブルジットの言語統計モデルは、ブルジットの政治・職場機能とフランクフルト人の人工ブルジットを確実に関連付けることができることを示す。
論文 参考訳(メタデータ) (2024-11-22T18:55:21Z) - Llama meets EU: Investigating the European Political Spectrum through the Lens of LLMs [18.836470390824633]
我々は、Llama ChatをEU政治の文脈で監査し、モデルの政治的知識と文脈における推論能力を分析する。
我々は、欧州議会で議論された個々のユーロ党の演説に対して、さらなる微調整、すなわちラマ・チャット(Llama Chat)を適用して、その政治的傾向を再評価した。
論文 参考訳(メタデータ) (2024-03-20T13:42:57Z) - A Linguistic Comparison between Human and ChatGPT-Generated Conversations [9.022590646680095]
この研究は、ChatGPTが生成した会話と人間の会話を比較して、言語問合せと単語数分析を取り入れている。
結果は,人間の対話における多様性と信頼度は高いが,ChatGPTは社会的プロセス,分析的スタイル,認知,注意的焦点,ポジティブな感情的トーンといったカテゴリーに優れていた。
論文 参考訳(メタデータ) (2024-01-29T21:43:27Z) - Language Models: A Guide for the Perplexed [51.88841610098437]
このチュートリアルは、言語モデルを学ぶ人と、興味を持ち、もっと学びたいと思う人とのギャップを狭めることを目的としています。
実験を通して学ぶことができる質問に焦点を当てた科学的視点を提供する。
言語モデルは、現在、その開発に繋がる研究の文脈に置かれています。
論文 参考訳(メタデータ) (2023-11-29T01:19:02Z) - Neural Conversation Models and How to Rein Them in: A Survey of Failures
and Fixes [17.489075240435348]
最近の条件付き言語モデルは、しばしば流動的な方法で、あらゆる種類のテキストソースを継続することができる。
言語の観点から言えば、会話への貢献は高い。
最近のアプローチでは、基礎となる言語モデルを様々な介入ポイントでテームしようと試みている。
論文 参考訳(メタデータ) (2023-08-11T12:07:45Z) - BabySLM: language-acquisition-friendly benchmark of self-supervised
spoken language models [56.93604813379634]
音声表現を学習するための自己指導技術は、人間のラベルを必要とせずに、音声への露出から言語能力を高めることが示されている。
語彙および構文レベルで音声言語モデルを探索するために,言語習得に親しみやすいベンチマークを提案する。
テキストと音声のギャップを埋めることと、クリーンな音声とその内話のギャップを埋めることである。
論文 参考訳(メタデータ) (2023-06-02T12:54:38Z) - Natural Language Decompositions of Implicit Content Enable Better Text
Representations [56.85319224208865]
本稿では,暗黙的に伝達されたコンテンツを明示的に考慮したテキスト分析手法を提案する。
我々は大きな言語モデルを用いて、観察されたテキストと推論的に関係する命題の集合を生成する。
本研究は,NLPにおいて,文字のみではなく,観察された言語の背景にある意味をモデル化することが重要であることを示唆する。
論文 参考訳(メタデータ) (2023-05-23T23:45:20Z) - ChatGPT Beyond English: Towards a Comprehensive Evaluation of Large
Language Models in Multilingual Learning [70.57126720079971]
大規模言語モデル(LLM)は、自然言語処理(NLP)において最も重要なブレークスルーとして登場した。
本稿では,高,中,低,低リソースの37言語を対象として,ChatGPTを7つのタスクで評価する。
従来のモデルと比較すると,様々なNLPタスクや言語に対するChatGPTの性能は低下していた。
論文 参考訳(メタデータ) (2023-04-12T05:08:52Z) - ChatGPT and a New Academic Reality: Artificial Intelligence-Written
Research Papers and the Ethics of the Large Language Models in Scholarly
Publishing [6.109522330180625]
ChatGPTは、テキストベースのユーザ要求を満たすために自然言語処理を使用する生成事前学習トランスフォーマーである。
GPT-3のような大規模言語モデルの出現に伴う潜在的な倫理的問題について論じる。
論文 参考訳(メタデータ) (2023-03-21T14:35:07Z) - An Inclusive Notion of Text [69.36678873492373]
テキストの概念の明確さは再現可能で一般化可能なNLPにとって不可欠である,と我々は主張する。
言語的および非言語的要素の2層分類を導入し,NLPモデリングに使用することができる。
論文 参考訳(メタデータ) (2022-11-10T14:26:43Z) - Testing the Ability of Language Models to Interpret Figurative Language [69.59943454934799]
比喩的・比喩的な言語は言論において一般的である。
現代の言語モデルが非リテラルなフレーズをどの程度解釈できるかについては、未解決の疑問が残る。
ウィノグラードスタイルの非文字言語理解タスクであるFig-QAを紹介する。
論文 参考訳(メタデータ) (2022-04-26T23:42:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。